В данной статье Вы сможете найти готовую реализацию и описание алгоритма предназначенного для реконструкции логических функций методом чёрного ящика. Под логической функцией я подразумеваю такую функцию, которая принимает в качестве аргументов множество булевых значений и соответственно возвращает одно. Пример:
def customlogic(params): return params[0] and params[1] and not params[5] and params[11] or params[2] and not params[3] or params[0] and params[5] and not params[6] or params[7] and not params[8]
В конце статьи алгоритм проверяется на данных полученных из реального мира.
По моему мнению, данная задача тесно связана с нейрофизиологией и как Вы могли уже догадаться я вдохновлялся работой нейронов, поэтому будут использованы аналогии связанные с работой и строением данного типа клеток. В частности, желание что-нибудь накодить пришло после прочтения статьи об устройстве и функционировании дендритов. Хоть бОльшую часть материала я не усвоил, но провёл некоторые аналогии.
- Дендритные деревья выполняют логическую операцию AND, так как потенциалы приходящие от ветвей суммируются, а если нет сигнала от одной или нескольких ветвей, то скорее всего потенциал не дойдёт до сомы.
- Cома выполняет OR, генерируя потенциал действия если хотя бы одно дерево доставило сигнал.
- Ингибиторные(тормозящие) связи являются аналогом NOT. Правда есть баг, с точки зрения логики: NOT False = False, так как отсутствие сигнала от тормозящей связи само по себе не способно вызывать потенциал действия. Что сужает круг возможных функций, до тех которые при всех неактивных параметрах(False) не генерируют True. Следовательно единичный нейрон не может симулировать логическое отрицание, но вполне способен сделать XOR. Такое поведение хоть и является «странным», но несёт некоторые выгоды. Данный подход является довольно энергоэффективным, ведь если держать нейрон включённым когда все дендриты не активны — значить тратить энергию впустую. Конечно есть исключения, нейроны которые таки периодически включаются без стимуляции дендритов. Грубо говоря, можно симулировать AND NOT, но OR NOT нельзя
Думаю достаточно лирики, перейдём к делу.
import random class LogicReconstructer: groups=[] threshold = 0.99 maxmem = 10 numparams = 0 def __init__(self,numparams,threshold = 0.99, totalmem = 10): self.numparams=numparams self.threshold=threshold self.maxmem=totalmem def getactive(self,params): if len(params)!=self.numparams: raise Exception("LogicReconstructer: numparams mismatch") active=[] for x in range(self.numparams): if params[x]: active.append(x) return active def extractgroups(self,params,result): active=self.getactive(params) exist = False ignore = False if result and active: ind=0 while ind<len(self.groups): if len(active)>len(self.groups[ind][0]) and self.issublist(self.groups[ind][0],active): ignore=True break elif len(active)==len(self.groups[ind][0]) and self.issublist(active,self.groups[ind][0]): exist=True break elif len(active)<len(self.groups[ind][0]) and self.issublist(active,self.groups[ind][0]): del self.groups[ind] ind-=1 ind+=1 if not exist and not ignore: self.groups.append([active,[0]*self.numparams,False]) def extractinhibitors(self,params,result): active=self.getactive(params) if result: count=0 for _,grp in enumerate(self.groups): if self.issublist(grp[0],active): count+=1 if count>1: return for _,grp in enumerate(self.groups): if not grp[2] and self.issublist(grp[0],active): neg=[] negvalue=False for y in range(self.numparams): if grp[1][y]<=-self.threshold: neg.append(y) negvalue|=params[y] elif grp[1][y]>=self.threshold: grp[2]=True for y in range(self.numparams): if params[y]: if y in neg or not negvalue: grp[1][y] = self.counting(grp[1][y],self.maxmem,result) def counting(self,prc,total,item): result=prc-prc/total if not item: result-=1/total else: result+=1/total return result def issublist(self,a,b): for ind,item in enumerate(a): if item not in b: return False return True def getsublist(self,a,b): result=[] for ind,item in enumerate(a): if item in b: result.append(item) return result def simulate(self,params): result=False for ind,item in enumerate(self.groups): if item[2]: locres=True for x in range(len(item[0])): locres&=params[item[0][x]] for x in range(len(item[1])): if item[1][x]<=-self.threshold: locres=locres&~params[x] result|=locres return result def getlogicfunc(self,guess=False): result="" for ind,item in enumerate(self.groups): if item[2] or guess: locres="" for x in range(len(item[0])): if x!=0: locres+=" and " locres+=str(item[0][x]) for x in range(len(item[1])): if item[1][x]<=-self.threshold: locres+=" and not "+str(x) if ind!=0: result+=" or " result+=locres return result def randparams(self): result = [] for x in range(self.numparams): result.append(random.choice([True, False])) return result def isready(self): result=bool(self.groups) for ind,item in enumerate(self.groups): result&=item[2] return result def getlogicstuct(self): result = [] for _,item in enumerate(self.groups): grp=[] if item[2]: for x in range(len(item[0])): grp.append([item[0][x],True]) for x in range(len(item[1])): if item[1][x]<=-self.threshold: grp.append([x,False]) if grp: result.append(grp) return result def simulatebystruct(self,params,grps): for _,item in enumerate(grps): locres=True for _,param in enumerate(item): if param[1]: locres&=params[param[0]] else: locres&=~params[param[0]] if not locres: break if locres: return True return False def customlogic(params): return params[0] and params[1] and not params[5]and params[11] or params[2] and not params[3] \ or params[0] and params[5] and not params[6] or params[7] and not params[8] def newme(): numparams = 12 neuron=LogicReconstructer(numparams) while not neuron.isready(): params=neuron.randparams() funcresult=customlogic(params) neuron.extractgroups(params,funcresult) neuron.extractinhibitors(params,funcresult) for x in range(1000): params=neuron.randparams() if neuron.simulate(params)!=customlogic(params): print("Simulate is wrong.") return print(neuron.getlogicfunc()) if __name__ == "__main__": newme()
Итак, мы имеем набор входных параметров, причём некоторые из них могут никак не влиять на результат выполнения, поэтому первым делом нужно понять какие параметры важны. Лучше начать со сбора независимых активационных групп, другими словами если результат работы функции — True, то записываем номера активных параметров в базу, с некоторыми оговорками, которые Вы можете посмотреть в методе extractgroups. Таким образом мы найдем параметры связанные логическим оператором AND. Этот этап можно сравнить с отращиванием дендритов.
Теперь же перейдем к настройке синапсов и прежде всего нужно выделить тормозящие связи. Так как группы являются условно независимыми от тормозящих связей, то значит можно воспользоваться теоремой Байеса. Иными словами если активационная группа сработала, то подсчитываем влияние остальных параметров на результат. Если параметр негативно влияет на результат, т.е. при его активации результат в большинстве случаев был False, то он и является тормозящим(AND NOT). Подробности смотрим в методе extractinhibitors.
Работа алгоритма считается завершённой когда, все группы получили подтверждение того, что все тормозящие связи были найдены. Подтверждение заключается в том, что Байесова вероятность одного из параметров перешагнула через threshold.
Но допустим, что у нас не хватает каких-то важных параметров, с которыми работает функция, то как это определить? Например:
params[0] and params[1] and not params[2] or params[3] and random.choice([True, False])
Мы знаем про 4 параметра, но не учитываем пятый. Конкретно в этом случаи активационная группа, которая состоит лишь из параметра 3, не переступит порог срабатывания(threshold). Но если бы мы всё-таки его учли, то он находился бы в одной группе с 3-им. Как Вы поняли группы разделяются логическим оператором OR.
А вот если не хватает целой группы:
params[0] and params[1] and not params[2] or random.choice([True, False]) and random.choice([True, False])
то группы(простите за тавтологию) при анализе разделяются на единичные параметры и каждый параметр станет активационным, что и является признаком.
Попробуйте поиграться с customlogic, дабы убедиться, что алгоритм работает. Я например заметил, что при большом количестве тормозящих связей в группе, она может не определиться.
// neuro.cpp: определяет точку входа для консольного приложения. // #include "stdafx.h" #include <vector> #include <map> #include <stdlib.h> #include <time.h> #include <iostream> using namespace std; class Bool { public: Bool(): m_value(){} Bool( bool value ) : m_value(value){} operator bool() const { return m_value;} bool* operator& () { return &m_value; } const bool * const operator& () const { return &m_value; } private: bool m_value; }; class neuron { public: double threshold; int synapticmem; int numparams; map<int,vector<char>> groups; map<int,vector<double>> bayesian; map<int,map<char,bool>> grouplogic; int maxid; neuron(int numparams, double threshold = 0.99, int synapticmem = 10) { this->numparams=numparams; this->threshold=threshold; this->synapticmem=synapticmem; maxid=0; srand ( time(NULL) ); } ~neuron() { } vector<char> getactive(vector<Bool>& params) { if (params.size()!=numparams) throw 1;// numparams mismatch vector<char> active; for (int i=0;i<this->numparams;i++) if (params[i]) active.push_back((char)i); return active; } void extractgroups(vector<Bool>& params, bool result) { vector<char> active= this->getactive(params); bool ignore = false; bool exist = false; if (result && active.size()>0) { map<int,vector<char>>::iterator i=this->groups.begin(); while (i!=this->groups.end()) { if (active.size()>i->second.size()&&this->issublist(i->second,active)) { ignore=true; break; } else if (active.size()==i->second.size()&&this->issublist(active,i->second)) { exist=true; break; } else if (active.size()<i->second.size()&&this->issublist(active,i->second)) { this->bayesian.erase(i->first); this->grouplogic.erase(i->first); i=this->groups.erase(i); } else i++; } if (!exist && !ignore) { this->groups[this->maxid]=active; this->bayesian[this->maxid]=*new vector<double>(numparams,0); this->maxid++; } } } template< class T > bool issublist(vector<T>& sublist, vector<T>& fulllist) { for (int i=0;i<sublist.size();i++) { bool match = false; for (int n=0;n<fulllist.size();n++) if (sublist[i]==fulllist[n]) { match=true; break; } if (!match) return false; } return true; } template<class InputIterator, class T> InputIterator find (InputIterator first, InputIterator last, const T& val) { while (first!=last) { if (*first==val) return first; ++first; } return last; } void extractinhibitors(vector<Bool>& params, bool result) { vector<char> active= this->getactive(params); if (result) { bool count = false; for (map<int,vector<char>>::iterator i=this->groups.begin();i!=this->groups.end();++i) if(this->issublist(i->second,active)) if (!count) count=true; else return; } for (map<int,vector<char>>::iterator i=this->groups.begin();i!=this->groups.end();++i) if (grouplogic.count(i->first)==0) if (this->issublist(i->second,active)) { vector<char> neg; bool negvalue = false; for (int n=0;n<this->numparams;n++) if (this->bayesian[i->first][n]<=-1*this->threshold) { neg.push_back((char)n); negvalue|=params[n]; } else if (this->bayesian[i->first][n]>=this->threshold) if (grouplogic.count(i->first)==0) this->build_grouplogic(i->first); for (int n=0;n<this->numparams;n++) if (params[n]) if (!negvalue || this->find(neg.begin(), neg.end(), n) != neg.end()) this->bayesian[i->first][n]=counting(this->bayesian[i->first][n],result); } } double counting(double prc, bool result) { double oneless = prc - prc/this->synapticmem; if (result) oneless+=1.0/this->synapticmem; else oneless-=1.0/this->synapticmem; return oneless; } void build_grouplogic(int indgroup) { for (int i=0;i<this->groups[indgroup].size();i++) this->grouplogic[indgroup][(char)groups[indgroup][i]]=true; for (int i=0;i<numparams;i++) if (this->bayesian[indgroup][i]<=-1*threshold) this->grouplogic[indgroup][(char)i]=false; } bool isready() { int count = 0; for (map<int,vector<char>>::iterator i=this->groups.begin();i!=this->groups.end();++i) if (grouplogic.count(i->first)!=0) count++; if (count==groups.size()&&groups.size()>0) return true; return false; } bool randomBool() { return rand() % 2 == 1; } void randparams(vector<Bool>& params) { for (int i=0;i<this->numparams;i++) params[i]=this->randomBool(); } string getfunction() { string result=""; bool maincount=false; for (map<int,map<char,bool>>::iterator i=this->grouplogic.begin();i!=this->grouplogic.end();++i) { if (maincount) result+=" or "; string locres=""; bool count = false; for (map<char,bool>::reverse_iterator n=i->second.rbegin();n!=i->second.rend();++n) { if (count) locres+=" and "; if (!n->second) locres+="not "; locres+=(char)(((int)'0')+(int)n->first); count=true; } result+=locres; maincount=true; } return result; } bool simulate(vector<Bool>& params) { bool result=false; for (map<int,map<char,bool>>::iterator i=this->grouplogic.begin();i!=this->grouplogic.end();++i) { bool locres=true; bool count = false; for (map<char,bool>::iterator n=i->second.begin();n!=i->second.end();++n) { if (n->second) locres&=params[(int)n->first]; else locres&=!params[(int)n->first]; } result|=locres; } return result; } }; bool customlogic(vector<Bool>& params) { return params[0] && params[1] && !params[2] || params[3] && !params[1] || params[5] && !params[0] && params[1]; } int _tmain(int argc, _TCHAR* argv[]) { int numparams = 6; clock_t start = clock() ; neuron* nine=new neuron(numparams); while (!nine->isready()) { vector<Bool> params(numparams, false); nine->randparams(params); bool result = customlogic(params); nine->extractgroups(params,result); nine->extractinhibitors(params,result); } clock_t end = clock(); double elapsed_time = (end-start)/(double)CLOCKS_PER_SEC; for (int i=0;i<1000;i++) { vector<Bool> params(numparams, false); nine->randparams(params); if (nine->simulate(params)!=customlogic(params)) { printf("Simulate is wrong"); return 0; } } printf("%s\n%.3f sec\n",nine->getfunction().c_str(),elapsed_time); getchar(); return 0; }
Эксперимент
Конечно хорошо, что алгоритм работает, но справиться ли он с данными из реального мира? Я решил это проверить на одном наборе данных взятом отсюда. Задача заключается в том, чтобы классифицировать фальшивые банкноты от настоящих по четырём параметрам. Надо сказать я совсем не понял что, они означают. Впрочем это только на руку чистоте эксперимента, ведь обучаться должна машина, а не я.
def getbinary(num,max,min =0 ): result=[] binnums=int(math.ceil(math.log(abs(min-max),2))) binstr=('{0:0'+str(binnums)+'b}').format(-min+num) for _,item in enumerate(binstr): if item=='1': result.append(True) else: result.append(False) return result def banknotes(): file = open('C:/bankdata.txt', 'r')# http://archive.ics.uci.edu/ml/datasets/banknote+authentication lines = file.readlines() file.close() data = [] for i in range(len(lines)): data.append(lines[i].strip().split(",")) lines.clear() numdata = [] paramsmax=[0,0,0,0] paramsmin=[0,0,0,0] for i in range(len(data)): tmp=[] for x in range(len(data[i])): if x!=4: tmp.append(int(round(float(data[i][x])))) paramsmax[x]=max(paramsmax[x],int(round(float(data[i][x])))) paramsmin[x]=min(paramsmin[x],int(round(float(data[i][x])))) else: if data[i][x]=='0': tmp.append(False) else: tmp.append(True) numdata.append(tmp) data.clear() bindata=[] for i in range(len(numdata)): tmp=[] for x in range(len(numdata[i])): if x!=4: tmp.extend(getbinary(numdata[i][x],paramsmax[x],paramsmin[x])) else: tmp.extend([numdata[i][x]]) bindata.append(tmp) numdata.clear() neuron = LogicReconstructer(len(bindata[0])-1,totalmem=7, threshold=0.98) for _,item in enumerate(bindata): neuron.extractgroups(item[:-1],item[-1:][0]) ready=False while not neuron.isready(): rnd=random.randint(0,len(bindata)-1) neuron.extractinhibitors(bindata[rnd][:-1],bindata[rnd][-1:][0]) logicstruct=neuron.getlogicstuct() print(logicstruct) falsepositive = 0 falsenegative = 0 for _,item in enumerate(bindata): res = neuron.simulatebystruct(item[:-1],logicstruct) if res!=item[-1:][0]: if res: falsepositive+=1 else: falsenegative+=1 print(falsenegative/len(bindata),falsepositive/len(bindata))
Так как алгоритм принимает только бинарные данные мне пришлось округлить числа до целых и перевести в бинарную форму функцией getbinary. После обучения у меня вышла вот такая структура состоящая из 134-ёх логических групп:
logicstr="[[[2, True], [3, True], [6, True], [7, True], [10, True], [11, True], [12, True], [13, True], [14, True], [16, True]], [[1, True], [3, True], [4, True], [8, True], [12, True], [15, True], [16, True], [17, True]], [[1, True], [3, True], [5, True], [10, True], [12, True], [14, True], [16, True], [6, False], [7, False], [8, False], [11, False]], [[1, True], [2, True], [5, True], [6, True], [7, True], [11, True], [13, True], [14, True], [16, True], [10, False]], [[1, True], [2, True], [5, True], [6, True], [11, True], [12, True], [13, True], [14, True], [16, True]], [[2, True], [3, True], [8, True], [9, True], [12, True], [15, True], [16, True]], [[1, True], [2, True], [3, True], [4, True], [8, True], [15, True], [17, True], [6, False], [7, False], [11, False]], [[1, True], [4, True], [7, True], [8, True], [11, True], [15, True], [2, False], [6, False]], [[1, True], [6, True], [10, True], [11, True], [12, True], [15, True], [16, True], [17, True]], [[0, True], [5, True], [6, True], [7, True], [8, True], [12, True], [14, True], [17, True], [10, False], [11, False], [13, False]], [[0, True], [4, True], [7, True], [15, True], [17, True], [6, False], [16, False]], [[1, True], [3, True], [5, True], [10, True], [12, True], [14, True], [17, True], [2, False], [6, False], [7, False]], [[0, True], [5, True], [6, True], [7, True], [12, True], [13, True], [14, True], [16, True], [2, False], [11, False]], [[0, True], [4, True], [7, True], [8, True], [16, True], [17, True], [6, False], [15, False]], [[1, True], [4, True], [8, True], [11, True], [13, True], [14, True], [2, False]], [[0, True], [4, True], [12, True], [14, True], [17, True], [6, False], [11, False], [13, False]], [[2, True], [3, True], [4, True], [8, True], [11, True], [15, True], [17, True], [1, False], [6, False], [7, False]], [[1, True], [3, True], [5, True], [6, True], [7, True], [11, True], [14, True], [2, False], [10, False], [12, False]], [[1, True], [2, True], [4, True], [12, True], [14, True], [11, False]], [[1, True], [6, True], [7, True], [8, True], [9, True], [14, True]], [[2, True], [5, True], [9, True], [14, True]], [[1, True], [4, True], [7, True], [11, True], [13, True], [14, True], [2, False], [3, False], [8, False], [12, False], [17, False]], [[1, True], [3, True], [5, True], [8, True], [10, True], [11, True], [14, True], [17, True], [6, False]], [[2, True], [3, True], [6, True], [7, True], [9, True], [13, True], [14, True]], [[1, True], [5, True], [6, True], [8, True], [11, True], [12, True], [13, True], [14, True], [16, True], [0, False], [7, False]], [[2, True], [3, True], [7, True], [9, True], [11, True], [14, True]], [[1, True], [5, True], [6, True], [7, True], [11, True], [12, True], [14, True], [16, True], [0, False], [8, False]], [[1, True], [3, True], [4, True], [8, True], [12, True], [13, True], [15, True], [16, True], [2, False], [5, False], [6, False], [11, False]], [[1, True], [6, True], [8, True], [10, True], [11, True], [12, True], [14, True]], [[1, True], [2, True], [4, True], [8, True], [13, True], [15, True], [16, True], [6, False]], [[1, True], [2, True], [5, True], [6, True], [10, True], [14, True], [16, True], [11, False], [13, False]], [[2, True], [3, True], [4, True], [7, True], [8, True], [11, True], [15, True], [1, False], [6, False], [17, False]], [[1, True], [6, True], [10, True], [11, True], [13, True], [15, True], [16, True], [17, True]], [[1, True], [2, True], [5, True], [7, True], [11, True], [12, True], [13, True], [14, True], [16, True]], [[2, True], [4, True], [6, True], [8, True], [11, True], [13, True], [16, True], [0, False], [15, False]], [[1, True], [5, True], [6, True], [7, True], [10, True], [14, True], [17, True], [2, False], [8, False], [11, False], [12, False]], [[1, True], [5, True], [10, True], [12, True], [13, True], [14, True], [16, True]], [[0, True], [4, True], [7, True], [15, True], [16, True], [6, False], [17, False]], [[1, True], [2, True], [3, True], [4, True], [7, True], [8, True], [16, True], [17, True], [6, False]], [[1, True], [2, True], [5, True], [6, True], [11, True], [14, True], [17, True], [10, False], [12, False]], [[1, True], [2, True], [4, True], [8, True], [12, True], [15, True], [16, True]], [[1, True], [4, True], [11, True], [13, True], [15, True], [16, True], [17, True], [5, False], [6, False], [7, False], [8, False]], [[2, True], [3, True], [5, True], [10, True], [11, True], [12, True], [13, True], [14, True]], [[2, True], [5, True], [8, True], [10, True], [11, True], [12, True], [13, True], [14, True]], [[1, True], [2, True], [5, True], [6, True], [7, True], [8, True], [11, True], [14, True], [3, False], [10, False], [12, False], [16, False], [17, False]], [[1, True], [7, True], [9, True], [13, True], [15, True], [16, True]], [[1, True], [2, True], [5, True], [10, True], [13, True], [14, True], [17, True], [3, False], [6, False], [11, False]], [[0, True], [5, True], [6, True], [7, True], [8, True], [11, True], [14, True], [17, True], [12, False], [16, False]], [[1, True], [3, True], [6, True], [7, True], [10, True], [11, True], [14, True], [5, False]], [[0, True], [5, True], [7, True], [8, True], [11, True], [12, True], [13, True], [14, True], [16, True], [2, False], [6, False]], [[2, True], [3, True], [4, True], [6, True], [11, True], [13, True], [16, True], [17, True], [1, False], [7, False], [8, False], [15, False]], [[1, True], [5, True], [6, True], [8, True], [10, True], [14, True], [17, True], [11, False]], [[1, True], [2, True], [5, True], [8, True], [10, True], [14, True], [17, True], [3, False], [6, False], [11, False]], [[2, True], [4, True], [6, True], [7, True], [11, True], [13, True], [15, True], [1, False], [16, False], [17, False]], [[1, True], [4, True], [11, True], [12, True], [14, True], [17, True], [2, False], [3, False], [13, False]], [[1, True], [2, True], [3, True], [5, True], [6, True], [7, True], [8, True], [12, True], [13, True], [14, True]], [[1, True], [2, True], [5, True], [6, True], [10, True], [12, True], [14, True], [17, True], [3, False], [7, False]], [[1, True], [6, True], [7, True], [9, True], [13, True], [14, True]], [[1, True], [9, True], [11, True], [12, True], [13, True], [15, True], [16, True], [17, True]], [[1, True], [7, True], [9, True], [12, True], [13, True], [14, True]], [[1, True], [2, True], [5, True], [10, True], [12, True], [14, True], [16, True]], [[3, True], [4, True], [6, True], [11, True], [12, True], [16, True], [0, False]], [[1, True], [8, True], [9, True], [12, True], [15, True], [16, True]], [[2, True], [4, True], [6, True], [7, True], [11, True], [13, True], [17, True], [15, False]], [[1, True], [2, True], [6, True], [7, True], [8, True], [10, True], [12, True], [14, True], [17, True]], [[2, True], [3, True], [4, True], [8, True], [11, True], [13, True], [14, True], [1, False], [12, False]], [[0, True], [4, True], [8, True], [13, True], [14, True], [2, False], [11, False], [12, False], [16, False], [17, False]], [[2, True], [3, True], [4, True], [8, True], [11, True], [15, True], [16, True], [1, False], [6, False], [7, False], [17, False]], [[2, True], [4, True], [8, True], [11, True], [12, True], [14, True], [0, False], [3, False]], [[1, True], [5, True], [6, True], [7, True], [11, True], [13, True], [14, True], [17, True], [0, False]], [[2, True], [3, True], [6, True], [8, True], [9, True], [13, True], [14, True]], [[1, True], [5, True], [6, True], [8, True], [10, True], [14, True], [16, True], [11, False]], [[1, True], [2, True], [6, True], [7, True], [10, True], [11, True], [14, True], [17, True]], [[1, True], [3, True], [6, True], [10, True], [11, True], [13, True], [14, True], [5, False]], [[1, True], [2, True], [3, True], [5, True], [7, True], [8, True], [11, True], [12, True], [14, True], [16, True]], [[2, True], [3, True], [4, True], [6, True], [11, True], [12, True], [15, True], [1, False], [7, False]], [[1, True], [2, True], [5, True], [10, True], [13, True], [14, True], [16, True], [6, False], [11, False]], [[1, True], [2, True], [3, True], [5, True], [6, True], [8, True], [11, True], [14, True], [16, True]], [[1, True], [2, True], [5, True], [6, True], [7, True], [8, True], [12, True], [13, True], [14, True], [17, True]], [[1, True], [3, True], [5, True], [6, True], [10, True], [13, True], [14, True], [17, True], [2, False], [11, False]], [[2, True], [3, True], [9, True], [11, True], [12, True], [13, True], [15, True], [16, True]], [[2, True], [3, True], [6, True], [7, True], [8, True], [9, True], [14, True], [17, True]], [[1, True], [8, True], [9, True], [11, True], [13, True], [14, True]], [[1, True], [2, True], [6, True], [7, True], [10, True], [11, True], [14, True], [16, True], [5, False], [13, False]], [[1, True], [3, True], [6, True], [10, True], [11, True], [12, True], [14, True], [17, True]], [[1, True], [2, True], [7, True], [8, True], [10, True], [11, True], [12, True], [13, True], [14, True]], [[0, True], [5, True], [6, True], [7, True], [11, True], [14, True], [16, True], [8, False], [12, False], [13, False]], [[1, True], [4, True], [7, True], [11, True], [15, True], [17, True], [2, False], [6, False]], [[0, True], [5, True], [7, True], [11, True], [12, True], [13, True], [14, True], [16, True], [17, True], [2, False], [6, False]], [[3, True], [4, True], [6, True], [7, True], [11, True], [13, True], [15, True], [0, False], [17, False]], [[1, True], [3, True], [5, True], [6, True], [11, True], [12, True], [13, True], [14, True], [16, True]], [[1, True], [3, True], [5, True], [10, True], [11, True], [13, True], [14, True], [17, True], [2, False], [6, False]], [[1, True], [6, True], [7, True], [10, True], [11, True], [12, True], [13, True], [14, True], [16, True]], [[1, True], [3, True], [4, True], [8, True], [12, True], [13, True], [15, True], [17, True], [2, False], [6, False], [7, False], [11, False]], [[4, True], [6, True], [8, True], [11, True], [12, True], [17, True], [0, False], [15, False]], [[1, True], [7, True], [8, True], [10, True], [11, True], [12, True], [15, True], [16, True], [17, True]], [[1, True], [5, True], [10, True], [12, True], [13, True], [14, True], [17, True]], [[1, True], [3, True], [6, True], [7, True], [8, True], [10, True], [12, True], [14, True]], [[0, True], [5, True], [6, True], [7, True], [12, True], [13, True], [14, True], [17, True], [3, False], [8, False], [11, False]], [[3, True], [4, True], [6, True], [7, True], [8, True], [11, True], [13, True], [16, True], [15, False]], [[2, True], [3, True], [4, True], [11, True], [12, True], [14, True], [0, False], [1, False], [8, False]], [[4, True], [6, True], [7, True], [8, True], [11, True], [13, True], [15, True], [1, False], [2, False], [3, False]], [[1, True], [2, True], [4, True], [11, True], [14, True], [3, False], [6, False], [10, False]], [[2, True], [3, True], [6, True], [7, True], [9, True], [12, True], [15, True], [16, True], [17, True]], [[1, True], [3, True], [4, True], [7, True], [11, True], [15, True], [16, True], [2, False], [6, False]], [[2, True], [3, True], [8, True], [9, True], [11, True], [13, True], [15, True], [16, True], [17, True]], [[2, True], [3, True], [6, True], [7, True], [10, True], [11, True], [12, True], [13, True], [14, True], [17, True]], [[1, True], [3, True], [4, True], [7, True], [12, True], [13, True], [15, True], [17, True], [6, False]], [[1, True], [4, True], [8, True], [11, True], [15, True], [16, True], [2, False], [13, False]], [[1, True], [6, True], [7, True], [8, True], [10, True], [12, True], [13, True], [14, True]], [[1, True], [2, True], [5, True], [7, True], [11, True], [12, True], [13, True], [14, True], [17, True]], [[2, True], [4, True], [6, True], [8, True], [11, True], [13, True], [17, True], [0, False], [15, False]], [[1, True], [2, True], [3, True], [5, True], [6, True], [7, True], [12, True], [13, True], [14, True], [17, True]], [[4, True], [5, True], [11, True], [13, True], [16, True], [1, False], [15, False]], [[1, True], [2, True], [4, True], [8, True], [12, True], [15, True], [17, True], [11, False]], [[2, True], [3, True], [4, True], [7, True], [11, True], [15, True], [17, True], [1, False], [6, False]], [[2, True], [4, True], [7, True], [11, True], [12, True], [14, True], [0, False], [3, False]], [[2, True], [3, True], [5, True], [6, True], [7, True], [11, True], [12, True], [14, True], [17, True], [0, False], [8, False], [16, False]], [[1, True], [3, True], [4, True], [11, True], [14, True], [2, False], [6, False], [16, False]], [[2, True], [3, True], [6, True], [7, True], [9, True], [13, True], [15, True], [16, True], [17, True]], [[2, True], [8, True], [9, True], [11, True], [14, True]], [[1, True], [2, True], [3, True], [4, True], [7, True], [15, True], [17, True], [6, False], [11, False]], [[1, True], [6, True], [7, True], [8, True], [10, True], [11, True], [14, True], [5, False]], [[1, True], [2, True], [3, True], [5, True], [6, True], [7, True], [12, True], [13, True], [14, True], [16, True]], [[1, True], [5, True], [6, True], [11, True], [12, True], [14, True], [17, True], [2, False]], [[2, True], [3, True], [4, True], [11, True], [13, True], [15, True], [16, True], [1, False]], [[2, True], [8, True], [9, True], [11, True], [12, True], [15, True], [16, True]], [[0, True], [5, True], [6, True], [7, True], [11, True], [13, True], [14, True], [17, True], [1, False], [2, False], [8, False], [12, False]], [[1, True], [2, True], [6, True], [10, True], [11, True], [12, True], [14, True], [17, True]], [[0, True], [4, True], [8, True], [13, True], [15, True], [17, True], [2, False], [3, False], [5, False], [6, False]], [[1, True], [3, True], [7, True], [8, True], [10, True], [11, True], [12, True], [14, True], [5, False], [6, False], [16, False]], [[1, True], [2, True], [3, True], [5, True], [8, True], [11, True], [12, True], [13, True], [14, True], [16, True]], [[1, True], [2, True], [3, True], [5, True], [6, True], [11, True], [13, True], [14, True], [16, True], [10, False]], [[1, True], [4, True], [8, True], [11, True], [15, True], [17, True], [2, False], [12, False]]]" logicstruct=literal_eval(logicstr)
которая даёт 2.8% ложно отрицательных и 0.6% ложно положительных ответов. Эти 134 группы обобщили около 700 положительных примеров. Всего было 1372 записи. Каждый запуск может генерировать новую структуру. Так же прошу заметить, что я не разделял данные на обучающею и проверочную выборки и критика в плане: «Да алгоритм просто всё запомнил и на новых данных накроется» — вполне уместна.
ссылка на оригинал статьи http://habrahabr.ru/post/208240/
Добавить комментарий