
Заинтересовашихся прошу под кат.
Вместо введения
В последнее время наблюдается ярко выраженная тенденция роста интереса к такой области информационных технологий, как автоматизация жизнедеятельности. Автоматизация сама по себе явление далеко не новое и уже десятки лет для большинства промышленных производств является не прихотью, а необходимостью, без которой просто немыслимо выживание бизнеса в условиях жёсткой конкуренции. Так почему же только сейчас мы так много слышим про Интернет Вещей (Internet of Things), M2M (Machine-to-machine) коммуникации и прочие “умные” технологии? Возможно, причиной является то, что, как и во многих подобных случаях, была набрана некая “критическая масса” инноваций в купе с доступностью элементной базы для широкой публики. Так же, как когда-то развитие Интернета и доступность интернет-технологий породило целую волну информационных проектов, меняющих мир до сих пор, так и сейчас мы становимся свидетелями того, как из таких “кирпичиков” как программирование, микро-электроника, Интернет создаётся множество интересных бытовых решений. Далеко не все из них “взлетят” и это абсолютно нормально, но многие из них могут быть основой (или вдохновением) для чего-то действительно потрясающего.
Лично я этим очень активно интересуюсь уже не первый год, и, возможно, некоторые слышали про открытый проект Умного Дома MajorDoMo, к созданию и работе над которым я имею удовольствие относиться. Но сейчас речь не о нём, а о некотором параллельном проекте, очередном эксперименте, если хотите, который меня увлёк некоторое время назад и результатами которого я делюсь в этой статье.
Имея в “багаже” проект платформы Умного Дома, я задумался о том, что хоть он и является очень гибким в применении, но большое количество возможностей требует соответствующего оборудования, что не всегда удобно и практично. Для каких-то задач “малой” автоматизации можно обойтись и одним микроконтроллером, но здесь уже теряем в гибкости и повышаем требования к квалификации пользователя. Для меня показалось очевидным, что есть необходимость в неком промежуточном варианте – достаточно компактном и энерго-эффективном, но при этом гибком в настройке и использовании. Дадим рабочее название этому варианту “Умная Точка” или SmartPoint. Попутно сформировался целый список пожеланий по возможностям, которые было бы здорово в этом устройстве получить.
Задача
Итак, от лирики к практике. Вот основные требования к устройству SmartPoint:
- Гибкая система правил для реакции на события от сенсоров
- Веб-интерфейс для “ручного” управления
- HTTP API для интеграции в более сложный комплекс
- Работа ONLINE – доступ к веб-интерфейсу устройства через Интернет без статического IP и “проброса” портов на маршрутизаторе
- Работа OFFLINE – функционирование настроенного устройства не должно зависеть от наличия доступа в Интернет
Дополнительные (практические) пожелания для устройства:
- Работа по WiFi
- Наличие встроенных сенсоров и исполнительных модулей (устройство должно иметь практическую пользу сразу “из коробки”, а не “в теории”)
- Беспроводной “локальный” интерфейс для взаимодействия с более простыми датчиками/исполнительными модулями
- Интернет-сервис (личный кабинет) для настройки и мониторинга работы устройства
Контроллер, хост, периферия
Обдумывая снова и снова концепцию, а так же немалый набор “хотелок” пришёл к выводу, что одним микроконтроллером обойтись не получится. Во-первых, я всё-таки не настолько хорошо умею их программировать, чтобы на низком уровне реализовать всё задуманное, а во-вторых, далеко не всякий контроллер вынесет такой аппетит пожеланий. Было решено пойти по пути наименьшего сопротивления – разделить устройство на две логические части: одна (“контроллер”) будет на базе микроконтроллера и отвечать за элементарное взаимодействие с “железом”, а вторая (“хост”) на базе встроенного Linux, отвечать за более высокий уровень (интерфейс, система правил, API). В качестве первого блока был выбран (угадайте!) микроконтроллер Arduino, а в качестве второго блока в дело пошёл роутер TP-Link WR703N с прошивкой OpenWRT (заметка: было успешно собрано пара аналогичных устройств на роутере DLink Dir-320). Предвидя праведный гнев, спешу напомнить, что задача у нас в первую очередь проверить на прототипе жизнеспособность концепции, а не спроектировать и собрать коммерческое устройство. Кроме того, использование данных компонентов облегчает повторение устройства — да здравствует open-source! Использование же Arduino позволяет применить опыт подключения бесконечного разнообразия датчиков и исполнительных модулей к нашему устройству.
Роутер TP-Link WR703N

Микроконтроллер Arduino Nano:

В качестве первоначального набора периферии были выбраны следующие элементы:
- Кнопка

- Датчик движения

- Датчик температуры DS18B20

- Приёмник 433Mhz
- Передатчик Noolite для управления светом
Набор периферии, как вы понимаете, может быть другим, но в данном примере я взял именно этот исходя из упомянутого выше принципа “практической полезности”. Таким образом, устройство у нас сможет реагировать на нажатие кнопки, на движение, на изменение температуры, а так же принимать данные от внешних датчиков (в данном случае использовался описанный ранее на хабре протокол) и управлять силовыми модулями системы Noolite (про модуль управления отдельная история и на фотографии не коммерческий экземпляр модуля, а один из ранних прототипов от производителя, попавший ко мне на испытания).
Объединив наброски по реализации и первоначальные требования, получаем вот такую структурную схему устройства:
Пояснения к схеме:
- Устройство состоит из микроконтроллера, взаимодействующего с проводной/беспроводной периферией, и ядра, отвечающего за логику обработки входящих данных и интерфейсы
- Имеется API и веб-интерфейс для приёма команд от внешних “терминалов” (компьютеры, телефоны и т.п.)
- Устройство на связи с внешним сервисом для загрузки правил, отправки уведомлений и приёма команд
Подготовка микроконтроллера
У микроконтроллера две основные задачи: во-первых, выдавать в консоль события от внешних устройств, и, во-вторых, принимать из консоли команды для передачи на подключенную периферию.
Ниже приведён текст скетча с учётом специфики перечисленной выше периферии. В нашем случае кнопка подключена на PIN4, датчик движения на PIN3, датчик температуры на PIN9, радиоприёмник на PIN8 и модуль Noolite на PIN-ы 10, 11.
#include <OneWire.h> #include <DallasTemperature.h> #include <VirtualWire.h> #include <EasyTransferVirtualWire.h> #include <EEPROM.h> //Needed to access the eeprom read write functions #include <SoftwareSerial.h> #define PIN_LED (13) // INDICATOR #define PIN_PIR (3) // BUTTON #define PIN_BUTTON (4) // BUTTON #define PIN_LED_R (6) // INDICATOR RED #define PIN_LED_G (5) // INDICATOR GREEN #define PIN_LED_B (7) // INDICATOR BLUE #define PIN_RF_RECEIVE (8) // EASYRF RECEIVER #define PIN_TEMP (9) // TEMPERATURE SENSOR #define PIN_NOO_RX (10) // RX PIN (connect to TX on noolite controller) #define PIN_NOO_TX (11) // TX PIN (connect to RX on noolite controller) #define TEMP_ACC (0.3) // temperature accuracy #define PERIOD_READ_TEMP (20) // seconds #define PERIOD_SEND_TEMP (600) // seconds (10 minutes) #define PERIOD_SEND_UPTIME (300) // seconds (5 minutes) #define NOO_BUF_LEN (12) unsigned int unique_device_id = 0; long int uptime = 0; long int old_uptime = 0; float sent_temperature=0; int sent_pir=0; int sent_button=0; int sent_button_longlick=0; long int timeCheckedTemp=0; long int timeSentTemp=0; long int timeSentUptime=0; long int timeButtonPressed=0; String inData; //create objects SoftwareSerial mySerial(PIN_NOO_RX, PIN_NOO_TX); // RX, TX OneWire oneWire(PIN_TEMP); DallasTemperature sensors(&oneWire); EasyTransferVirtualWire ET; unsigned int last_packet_id = 0; struct SEND_DATA_STRUCTURE{ //put your variable definitions here for the data you want to send //THIS MUST BE EXACTLY THE SAME ON THE OTHER ARDUINO //Struct can'e be bigger then 26 bytes for VirtualWire version unsigned int device_id; unsigned int destination_id; unsigned int packet_id; byte command; int data; }; //give a name to the group of data SEND_DATA_STRUCTURE mydata; //This function will write a 2 byte integer to the eeprom at the specified address and address + 1 void EEPROMWriteInt(int p_address, unsigned int p_value) { byte lowByte = ((p_value >> 0) & 0xFF); byte highByte = ((p_value >> 8) & 0xFF); EEPROM.write(p_address, lowByte); EEPROM.write(p_address + 1, highByte); } //This function will read a 2 byte integer from the eeprom at the specified address and address + 1 unsigned int EEPROMReadInt(int p_address) { byte lowByte = EEPROM.read(p_address); byte highByte = EEPROM.read(p_address + 1); return ((lowByte << 0) & 0xFF) + ((highByte << 8) & 0xFF00); } void nooSend(byte channel, byte buf[NOO_BUF_LEN]) { buf[0]=85; buf[1]=B01010000; // buf[4]=0; buf[5]=channel; buf[9]=0; int checkSum; for(byte i=0;i<(NOO_BUF_LEN-2);i++) { checkSum+=buf[i]; } buf[10]=lowByte(checkSum); buf[11]=170; Serial.print("Sending: "); for(byte i=0;i<(NOO_BUF_LEN);i++) { Serial.print(buf[i]); if (i!=(NOO_BUF_LEN-1)) { Serial.print('-'); } } Serial.println(""); for(byte i=0;i<(NOO_BUF_LEN);i++) { mySerial.write(buf[i]); } } void noolitePair(byte channel) { byte buf[NOO_BUF_LEN]; for(byte i=0;i<(NOO_BUF_LEN);i++) { buf[i]=0; } buf[2]=15; buf[3]=0; nooSend(channel,buf); } void nooliteUnPair(byte channel) { byte buf[NOO_BUF_LEN]; for(byte i=0;i<(NOO_BUF_LEN);i++) { buf[i]=0; } buf[2]=9; buf[3]=0; nooSend(channel,buf); } void nooliteTurnOn(byte channel) { byte buf[NOO_BUF_LEN]; for(byte i=0;i<(NOO_BUF_LEN);i++) { buf[i]=0; } buf[2]=2; buf[3]=0; nooSend(channel,buf); } void nooliteTurnOff(byte channel) { byte buf[NOO_BUF_LEN]; for(byte i=0;i<(NOO_BUF_LEN);i++) { buf[i]=0; } buf[2]=0; buf[3]=0; nooSend(channel,buf); } void nooliteSwitch(byte channel) { byte buf[NOO_BUF_LEN]; for(byte i=0;i<(NOO_BUF_LEN);i++) { buf[i]=0; } buf[2]=4; buf[3]=0; nooSend(channel,buf); } void nooliteLevel(byte channel,byte level) { byte buf[NOO_BUF_LEN]; for(byte i=0;i<(NOO_BUF_LEN);i++) { buf[i]=0; } buf[2]=6; buf[3]=1; buf[6]=level; nooSend(channel,buf); } void blinking(int count) { for(int i=0;i<count;i++) { digitalWrite(PIN_LED, HIGH); delay(200); digitalWrite(PIN_LED, LOW); delay(200); } } void setColor(int r,int g, int b) { digitalWrite(PIN_LED_R, r); digitalWrite(PIN_LED_G, g); digitalWrite(PIN_LED_B, b); } void setup() { randomSeed(analogRead(0)); pinMode(PIN_LED, OUTPUT); pinMode(PIN_LED_R, OUTPUT); pinMode(PIN_LED_G, OUTPUT); pinMode(PIN_LED_B, OUTPUT); pinMode(PIN_PIR, INPUT); pinMode(PIN_BUTTON, INPUT); Serial.begin(9600); // Debugging only ET.begin(details(mydata)); // Initialise the IO and ISR vw_set_rx_pin(PIN_RF_RECEIVE); vw_setup(2000); // Bits per sec vw_rx_start(); // Start the receiver PLL running // Device ID Serial.print("Getting Device ID... "); unique_device_id=EEPROMReadInt(0); if (unique_device_id<10000 || unique_device_id>60000 || unique_device_id==26807) { Serial.print("N/A, updating... "); unique_device_id=random(10000, 60000); EEPROMWriteInt(0, unique_device_id); } Serial.println(unique_device_id); pinMode(PIN_NOO_RX, INPUT); pinMode(PIN_NOO_TX, OUTPUT); mySerial.begin(9600); } void loop() { uptime=round(millis()/1000); if (uptime!=old_uptime) { Serial.print("Up: "); Serial.println(uptime); old_uptime=uptime; if (((uptime-timeSentUptime)>PERIOD_SEND_UPTIME) || (timeSentUptime>uptime)) { timeSentUptime=uptime; Serial.print("P:"); Serial.print(random(65535)); Serial.print(";F:"); Serial.print("0"); Serial.print(";T:0;C:"); Serial.print("24"); Serial.print(";D:"); Serial.print(uptime); Serial.println(";"); } } int current_pir=digitalRead(PIN_PIR); if (current_pir!=sent_pir) { Serial.print(millis()/1000); Serial.print(" Motion sensor: "); Serial.println(current_pir); Serial.print("P:"); Serial.print(random(65535)); Serial.print(";F:"); Serial.print("0"); Serial.print(";T:0;C:"); Serial.print("12"); Serial.print(";D:"); Serial.print("1"); Serial.println(";"); sent_pir=(int)current_pir; } int current_button=digitalRead(PIN_BUTTON); if (current_button!=sent_button) { delay(50); int confirm_current_button=digitalRead(PIN_BUTTON); if (confirm_current_button==current_button) { if (current_button==1) { timeButtonPressed=millis(); sent_button_longlick=0; } if (current_button==0) { if (sent_button_longlick!=1) { Serial.print(millis()/1000); Serial.print(" Button press: "); Serial.println(current_button); Serial.print("P:"); Serial.print(random(65535)); Serial.print(";F:"); Serial.print("0"); Serial.print(";T:0;C:"); Serial.print("23"); Serial.print(";D:"); Serial.print("3"); Serial.println(";"); } } sent_button=(int)current_button; } } else { if (current_button==1) { int passed=millis()-timeButtonPressed; if ((passed>3000) && (sent_button_longlick!=1)) { sent_button_longlick=1; Serial.print(millis()/1000); Serial.print(" Button long press: "); Serial.println(current_button); Serial.print("P:"); Serial.print(random(65535)); Serial.print(";F:"); Serial.print("0"); Serial.print(";T:0;C:"); Serial.print("23"); Serial.print(";D:"); Serial.print("4"); Serial.println(";"); } } else { sent_button_longlick=0; } } if (((uptime-timeCheckedTemp)>PERIOD_READ_TEMP) || (timeCheckedTemp>uptime)) { // TEMP SENSOR 1 float current_temp=0; sensors.requestTemperatures(); current_temp=sensors.getTempCByIndex(0); if (current_temp>-100 && current_temp<50) { timeCheckedTemp=uptime; Serial.print("Temp sensor: "); Serial.println(current_temp); float diff=(float)sent_temperature-(float)current_temp; if ((abs(diff)>=TEMP_ACC) || ((uptime-timeSentTemp)>PERIOD_SEND_TEMP)) { // timeSentTemp=uptime; sent_temperature=(float)current_temp; Serial.print("P:"); Serial.print(random(65535)); Serial.print(";F:"); Serial.print("0"); Serial.print(";T:0;C:"); Serial.print("10"); Serial.print(";D:"); Serial.print((int)(current_temp*100)); Serial.println(";"); } } else { //Serial.print("Incorrect T: "); //Serial.println(current_temp); } } if (Serial.available()) { char c=Serial.read(); if (c == '\n' || c == ';') { Serial.println(inData); int commandProcessed=0; if (inData.equals("blink")) { Serial.println("BLINKING!"); blinking(3); commandProcessed=1; } if (inData.startsWith("pair")) { commandProcessed=1; inData.replace("pair",""); noolitePair(inData.toInt()); } if (inData.startsWith("on")) { commandProcessed=1; inData.replace("on",""); nooliteTurnOn(inData.toInt()); } if (inData.startsWith("off")) { commandProcessed=1; inData.replace("off",""); nooliteTurnOff(inData.toInt()); } if (inData.startsWith("switch")) { commandProcessed=1; inData.replace("switch",""); nooliteSwitch(inData.toInt()); } if (inData.startsWith("level")) { commandProcessed=1; inData.replace("level",""); int splitPosition; splitPosition=inData.indexOf('-'); if(splitPosition != -1) { String paramString=inData.substring(0,splitPosition); int channel=paramString.toInt(); inData=inData.substring(splitPosition+1,inData.length()); nooliteLevel(channel,inData.toInt()); } } if (inData.startsWith("unpair")) { commandProcessed=1; inData.replace("unpair",""); nooliteUnPair(inData.toInt()); } if (inData.startsWith("color-")) { commandProcessed=1; inData.replace("color-",""); if (inData.equalsIgnoreCase("r")) { setColor(255,0,0); } if (inData.equalsIgnoreCase("g")) { setColor(0,255,0); } if (inData.equalsIgnoreCase("b")) { setColor(0,0,255); } if (inData.equalsIgnoreCase("w")) { setColor(255,255,255); } if (inData.equalsIgnoreCase("off")) { setColor(0,0,0); } } if (commandProcessed==0) { Serial.print("Unknown command: "); Serial.println(inData); } inData=""; Serial.flush(); } else { inData += (c); } } if(ET.receiveData()) { digitalWrite(PIN_LED, HIGH); if (last_packet_id!=(int)mydata.packet_id) { Serial.print("P:"); Serial.print(mydata.packet_id); Serial.print(";F:"); Serial.print(mydata.device_id); Serial.print(";T:"); Serial.print(mydata.destination_id); Serial.print(";C:"); Serial.print(mydata.command); Serial.print(";D:"); Serial.print(mydata.data); Serial.println(";"); last_packet_id=(int)mydata.packet_id; } digitalWrite(PIN_LED, LOW); } if (mySerial.available()) Serial.write(mySerial.read()); }
Работу контроллера с периферией можно проверить и без подключения его к хост-модулю, а просто после прошивки запустить монитор порта и посмотреть, что выдаётся в консоль. Именно этот поток данных и будет получать хост-модуль, только он ещё сможет на него реагировать в соответствии с установленными правилами.
Подготовка хост-модуля (роутера)
Очень подробно останавливаться на прошивке роутера системой OpenWRT и последующей настройке в рамках данной статьи я не буду, а лучше дам ссылку на более полную инструкцию. В итоге у нас должен быть роутер в режиме клиента локальной WiFi-сети с выходом в интернет, а так же корректно определяющий подключенный микроконтроллер в качестве COM-порта.
Следующий шаг это трансформация нашего роутера в хост-модуль. Я использовал интерпретатор Bash для написания скриптов хост-модуля, т.к. мне показался он достаточно удобным и универсальным, т.е. не привязывающим платформу хост-модуля к какой-то определённой “железной” реализации – вместо роутера с OpenWRT может быть любое устройство со встроенным Linux-ом, лишь бы был Bash и драйверы для подключения микроконтроллера.
Алгоритм работы хост-модуля можно представить следующими пунктами:
- Инициализация – загрузка правил работы данного устройства из внешнего веб-сервиса (при его доступности), а так же установка канала связи с микроконтроллером
- Приём данных от контроллера и обработка их в соответствии с загруженными правилами
На уровне исходного кода это выглядит следующим образом:
MASTER_ID="AAAA-BBBB-CCCC-DDDD" ARDUINO_PORT=/dev/ttyACM0 ARDUINO_PORT_SPEED=9600 UPDATES_URL="http://connect.smartliving.ru/rules/" DATA_PATH="/etc/master/data" WEB_PATH="/www" ONLINE_CHECK_HOST="8.8.8.8" LOCAL_BASE_URL="http://connect.dev"
#!/bin/bash # settings . /etc/master/settings.sh # STEP 0 # wait to be online COUNTER=0 while [ $COUNTER -lt 5 ]; do ping -c 1 $ONLINE_CHECK_HOST if [[ $? = 0 ]]; then echo Network available. break; else echo Network not available. Waiting... sleep 5 fi let COUNTER=COUNTER+1 done #--------------------------------------------------------------------------- # START if [ ! -d "$DATA_PATH" ]; then mkdir $DATA_PATH chmod 0666 $DATA_PATH fi while : do #--------------------------------------------------------------------------- # Downloading the latest rules from the web echo Getting rules from $UPDATES_URL?id=$MASTER_ID wget -O $DATA_PATH/rules_set.tmp $UPDATES_URL?id=$MASTER_ID if grep -Fq "Rules set" $DATA_PATH/rules_set.tmp then mv $DATA_PATH/rules_set.tmp $DATA_PATH/rules_set.sh else echo Incorrect rules file fi #--------------------------------------------------------------------------- # Reading all data and sending to the web ALL_DATA_FILE=$DATA_PATH/all_data.txt rm -f $ALL_DATA_FILE echo -n id=$MASTER_ID>>$ALL_DATA_FILE echo -n "&data=">>$ALL_DATA_FILE FILES=$DATA_PATH/*.dat for f in $FILES do #echo "Processing $f file..." OLD_DATA=`cat $f` fname=${f##*/} PARAM=${fname/.dat/} echo -n "$PARAM|$OLD_DATA;">>$ALL_DATA_FILE done ALL_DATA=`cat $ALL_DATA_FILE` echo Posting: $UPDATES_URL?$ALL_DATA wget -O $DATA_PATH/data_post.tmp $UPDATES_URL?$ALL_DATA rm -f $DATA_PATH/*.dat #--------------------------------------------------------------------------- # Downloading the latest menu from the web echo Getting menu from $UPDATES_URL/menu2.php?download=1\&id=$MASTER_ID wget -O $DATA_PATH/menu.tmp $UPDATES_URL/menu2.php?download=1\&id=$MASTER_ID if grep -Fq "stylesheet" $DATA_PATH/menu.tmp then mv $DATA_PATH/menu.tmp $WEB_PATH/menu.html else echo Incorrect menu file fi #--------------------------------------------------------------------------- START_TIME="$(date +%s)" # main cycle stty -F $ARDUINO_PORT ispeed $ARDUINO_PORT_SPEED ospeed $ARDUINO_PORT_SPEED cs8 ignbrk -brkint -imaxbel -opost -onlcr -isig -icanon -iexten -echo -echoe -echok -echoctl -echoke noflsh -ixon -crtscts #--------------------------------------------------------------------------- while read LINE; do echo $LINE PASSED_TIME="$(($(date +%s)-START_TIME))" # Processing incoming URLs from controller REGEX='^GET (.+)$' if [[ $LINE =~ $REGEX ]] then URL=$LOCAL_BASE_URL${BASH_REMATCH[1]} #-URL=$LOCAL_BASE_URL wget -O $DATA_PATH/http.tmp $URL echo Getting URL echo $URL fi PACKET_ID="" DATA_FROM="" DATA_TO="" DATA_COMMAND="" DATA_VALUE="" REGEX='^P:([0-9]+);F:([0-9]+);T:([0-9]+);C:([0-9]+);D:([0-9]+);$' if [[ $LINE =~ $REGEX ]] then PACKET_ID=${BASH_REMATCH[1]} DATA_FROM=${BASH_REMATCH[2]} DATA_TO=${BASH_REMATCH[3]} DATA_COMMAND=${BASH_REMATCH[4]} DATA_VALUE=${BASH_REMATCH[5]} DATA_FILE=$DATA_PATH/$DATA_FROM-$DATA_COMMAND.dat echo -n $DATA_VALUE>$DATA_FILE fi if [ -f $DATA_PATH/incoming_data.txt ]; then echo "New incoming data:"; echo `cat $DATA_PATH/incoming_data.txt` cat $DATA_PATH/incoming_data.txt>$ARDUINO_PORT rm -f $DATA_PATH/incoming_data.txt fi ACTION_RECEIVED="" if [ -f $DATA_PATH/incoming_action.txt ]; then ACTION_RECEIVED=`cat $DATA_PATH/incoming_action.txt` echo "New incoming action: $ACTION_RECEIVED" rm -f $DATA_PATH/incoming_action.txt fi . $DATA_PATH/rules_set.sh if [ -f $DATA_PATH/reboot ]; then echo "REBOOT FLAG" rm -f $DATA_PATH/reboot break; fi done < $ARDUINO_PORT done #--------------------------------------------------------------------------- echo Cycle stopped.
В настройках можно видеть, что у устройства есть уникальный идентификатор (MASTER_ID), который используется для взаимодействия с веб-сервисом (напомню, что наличие постоянного соединения с ним не обязательно).
В ходе работы основного скрипта используется каталог /etc/master/data/ для хранения загруженного кода правил, значений последних показаний датчиков, а так же для работы некоторых конструкций системы правил (например, таймеров).
Полный набор файлов можно загрузить по данной ссылке.
Система правил
О системе правил было в общих чертах сказано выше, так что здесь остановлюсь на ней немного подробнее. Фактически, каждое правило представляет собой набор bash-инструкций. Первая часть этого набора, назовём её Активатор, проверяет входящие данные на предмет соответствия данному правилу, а вторая часть (Исполнитель) непосредственно исполняет какие-то действия.
Возможные условия активации правила:
- Получение строки определённого формата от микроконтроллера
- Получение команды определённого формата от внутреннего (кнопка, движение, температура) либо внешнего (беспроводного) датчика
- “Ручная” активации через API или другое правило (запуск сценария)
Возможные действия:
- Установка значения переменной
- Отправка строки/команды в контроллер датчиков (для внутренней обработки либо для внешнего устройства)
- HTTP-запрос на внешнюю веб-систему
- Запуск shell-комадны (Linux)
- Запуск сценария
- Отложенные действия по таймеру
# RULE 2 Forwarder RCSwitch (regex) MATCHED_RULE2='0' REGEX='^RCSwitch:(.+)$' if [[ $LINE =~ $REGEX ]] then MATCHED_RULE2="1" fi # RULE 2 ACTIONS if [[ "$MATCHED_RULE2" == "1" ]] then #Action 2.1 (http) echo "HTTP request: http://192.168.0.17/objects/?script=RCSwitch&rcswitch=${BASH_REMATCH[1]}" wget -O $DATA_PATH/http.tmp http://192.168.0.17/objects/?script=RCSwitch\&rcswitch=${BASH_REMATCH[1]} fi
Настройка правил производится через личный кабинет пользователя после регистрации устройства в веб-системе (сейчас вся серверная составляющая реализована как часть проекта connect.smartliving.ru). Программировать при этом не нужно, веб-система сама преобразует заданные пользователем правила в bash-команды. Со стороны пользователя интерфейс настройки выглядит примерно так:

Более подробно об использовании системы правил можно почитать на одной из страниц документации проекта.
Интерфейс и API
В принципе, вышеперечисленного вполне достаточно для создания автономного модуля, однако, список пожеланий был длинным, как и путь к реализации. Следующим шагом стало создание веб-интерфейса и API. Шаг этот достаточно не сложный, по сравнению с предыдущими, и реализован он был по схожему принципу. На хост-устройстве уже имеется веб-сервер, так что для реализации API был создан ещё один bash-скрипт и размещён в /www/cgi-bin/master
#!/bin/bash DATA_PATH="/etc/master/data" echo "Content-type: text/plain" echo "" # Save the old internal field separator. OIFS="$IFS" # Set the field separator to & and parse the QUERY_STRING at the ampersand. IFS="${IFS}&" set $QUERY_STRING Args="$*" IFS="$OIFS" # Next parse the individual "name=value" tokens. ARG_VALUE="" ARG_VAR="" ARG_OP="" ARG_LINE="" for i in $Args ;do # Set the field separator to = IFS="${OIFS}=" set $i IFS="${OIFS}" case $1 in # Don't allow "/" changed to " ". Prevent hacker problems. var) ARG_VAR="`echo -n $2 | sed 's|[\]||g' | sed 's|%20| |g'`" ;; # value) ARG_VALUE=$2 ;; line) ARG_LINE=$2 ;; op) ARG_OP=$2 ;; *) echo "<hr>Warning:"\ "<br>Unrecognized variable \'$1\' passed.<hr>" ;; esac done # Set value #ARG_OP="set" #echo $ARG_OP if [[ "$ARG_OP" == "set" ]] then # echo "Set operation<br>" echo -n "$ARG_VALUE">$DATA_PATH/$ARG_VAR.dat echo "OK" fi if [[ "$ARG_OP" == "get" ]] then # echo "Get operation<br>" cat $DATA_PATH/$ARG_VAR.dat fi if [[ "$ARG_OP" == "send" ]] then # echo "Send<br>" echo -n $ARG_LINE>>$DATA_PATH/incoming_data.txt echo "OK" fi if [[ "$ARG_OP" == "action" ]] then # echo "Action<br>" echo -n $ARG_LINE>>$DATA_PATH/incoming_action.txt echo "OK" fi if [[ "$ARG_OP" == "refresh" ]] then # echo "Send<br>" echo "Web">$DATA_PATH/reboot echo "OK" fi if [[ "$ARG_OP" == "run" ]] then # echo "Run<br>" echo `$ARG_LINE` fi
Этот скрипт обеспечивает следующие команды API:
Установка значения переменной
http://адрес_устройства/cgi-bin/master?op=set&var=Variable1&value=Value1
Устанавливает значение переменной Variable1 в Value1
Получение значения переменной
http://адрес_устройства/cgi-bin/master?op=get&var=Variable1
Возвращает значение переменной Variable1
Отправка данных в контроллер
http://адрес_устройства/cgi-bin/master?op=send&line=SomeData
Отправляет строчку SomeData в подключенный контроллер
Активация действия
http://адрес_устройства/cgi-bin/master?op=action&line=SomeAction
Инициализирует действие SomeAction, описанное в правилах (тип «Активные действия»)
Принудительно обновление правил
http://адрес_устройства/cgi-bin/master?op=refresh
Инициализирует принудительное обновление (скачивание) правил и веб-интерфейса без перезагрузки устройства
Системная команда
http://адрес_устройства/cgi-bin/master?op=run&line=SomeCommand
Инициализирует выполнение SomeCommand в оболочке системы (например, использование «reboot» перезапустит устройство)
После API был веб-интерфейс. С ним обошлись так же, как и с правилами – настраиваем его на веб-сервисе и обновляем на устройстве на том же этапе инициализации. Вот как выглядит интерфейс создания меню управления для устройства:

Чтобы не изобретать колесо, был взят легковесный frontend-фрэймворк Kraken и закинут в папку /www/kraken-master. После инициализации в папке /www/ появляется файл menu.html и соответственно обращаться к нашему настроенному веб-интерфейсу можно по адресу http://адрес_устройства/menu.html. Такой вид адреса выбран не случайно, а для совместимости с приложением MajorDroid – мелкая деталь, но я за универсальность и совместимость всего и вся, так что, почему бы и нет.
Работа в режиме Online
“Ух, ну и системка получается и это ещё не всё?” — спросите вы. Ну почти, осталась самая малость. Точнее «малость» для пользователя, но большой этап для разработчика (так часто бывает). А именно – работа с устройством через Интернет. Казалось бы, имеется веб-интерфейс, пробрасывай порты на роутере и пользуйся на здоровье. Но это не наши методы, наши методы в упрощении жизни окружающим (и усложнении себе). Предположим худшее – нет возможности изменить настройки роутера и сделать форвард портов. Или же предполагается использование множества подобных устройств в одной сети и к каждой (гипотетически) хочется иметь возможность обращаться извне. Решение было таковым – устройство само должно инициировать и поддерживать канал с внешним сервером для обмена данными и командами, внешний же сервер дублировал у себя заданный для конкретного устройства веб-интерфейс и организовывал передачу команд от пользователя по этому каналу. Канал представляет собой socket-соединение, которое с одной стороны (на устройстве) создаёт отдельный bash-скрипт и с другой стороны (на сервере) socket-сервер.
На устройстве скрипт находится в /etc/master/socket_client
#!/bin/bash # settings . /etc/master/settings.sh # STEP 0 # wait to be online COUNTER=0 while [ $COUNTER -lt 5 ]; do ping -c 1 $ONLINE_CHECK_HOST if [[ $? = 0 ]]; then echo Network available. break; else echo Network not available. Waiting... sleep 5 fi let COUNTER=COUNTER+1 done #--------------------------------------------------------------------------- # START if [ ! -d "$DATA_PATH" ]; then mkdir $DATA_PATH chmod 0666 $DATA_PATH fi while : do TEST_FILE=$DATA_PATH/data_sent.txt touch $TEST_FILE SOCKET_HOST=connect.smartliving.ru SOCKET_PORT=11444 exec 3<>/dev/tcp/$SOCKET_HOST/$SOCKET_PORT NOW=$(date +"%H:%M:%S") echo -n $NOW echo " Sending: Hello!" echo "Hello!">&3 read -t 60 ok <&3 NOW=$(date +"%H:%M:%S") echo -n $NOW echo -n " Received: " echo "$ok"; REGEX='^Please' if [[ ! $ok =~ $REGEX ]] then NOW=$(date +"%H:%M:%S") echo -n $NOW echo " Connection failed!" continue fi NOW=$(date +"%H:%M:%S") echo -n $NOW echo " Sending: auth:$MASTER_ID" echo "auth:$MASTER_ID">&3 read -t 60 ok <&3 NOW=$(date +"%H:%M:%S") echo -n $NOW echo -n " Received: " echo "$ok"; REGEX='^Authorized' if [[ ! $ok =~ $REGEX ]] then NOW=$(date +"%H:%M:%S") echo -n $NOW echo " Authorization failed!" exit 0 fi NOW=$(date +"%H:%M:%S") echo -n $NOW echo " Sending: Hello again!" echo "Hello again!">&3 read -t 60 ok <&3 NOW=$(date +"%H:%M:%S") echo -n $NOW echo -n " Received: " echo "$ok"; while read -t 120 LINE; do NOW=$(date +"%H:%M:%S") echo -n $NOW echo -n " Got line: " echo $LINE # Ping reply REGEX='^PING' if [[ $LINE =~ $REGEX ]] then echo -n $NOW echo " Sending: PONG!" echo PONG!>&3 fi # Run action REGEX='^ACTION:(.+)$' if [[ $LINE =~ $REGEX ]] then DATA_RECEIVED=${BASH_REMATCH[1]} NOW=$(date +"%H:%M:%S") echo -n $NOW echo -n " Action received: " echo $DATA_RECEIVED echo -n $DATA_RECEIVED>>$DATA_PATH/incoming_action.txt fi # Pass data REGEX='^DATA:(.+)$' if [[ $LINE =~ $REGEX ]] then DATA_RECEIVED=${BASH_REMATCH[1]} echo -n $NOW echo -n " Data received: " echo $DATA_RECEIVED echo -n $DATA_RECEIVED>>$DATA_PATH/incoming_data.txt fi # Pass data REGEX='^URL:(.+)$' if [[ $LINE =~ $REGEX ]] then DATA_RECEIVED=${BASH_REMATCH[1]} echo -n $NOW echo -n " URL received: " echo wget -O $DATA_PATH/data_post.tmp http://localhost$DATA_RECEIVED fi # Check files modified FILES=$DATA_PATH/*.dat for f in $FILES do if [ $f -nt $TEST_FILE ]; then echo "Processing $f ..." FNAME=${f##*/} PARAM=${FNAME/.dat/} CONTENT=`cat $f` echo -n $NOW echo " Sending: DATA:$PARAM|$CONTENT;" echo "data:$PARAM|$CONTENT;">&3 fi done touch $TEST_FILE done <&3 done #--------------------------------------------------------------------------- echo Cycle stopped.
Пользователю из его кабинета доступна ссылка и QR-код для работы с устройством. Один из тестовых примеров ниже:

Задачи на будущее
Вся описанная конструкция работает достаточно стабильно – с момента запуска и того времени, как я решил написать статью, прошло уже, пожалуй, пара месяцев, а устройство исправно выполняет заложенные в него функции. Однако, всё реализовано, что называется, без излишеств. Для проверки концепции этого достаточно, но для массового внедрения устройств на данной (или подобной ей) платформе я бы поработал по следующим направлениям:
- Безопасность (шифрование, пароли доступа к интерфейсам и т.п.)
- Производительность на стороне сервера (хоть пока проблем не было, но самодельный socket-сервер это далеко не лучший вариант реализации)
- UI/UX (как для устройства, так и для личного кабинета)
- Железо (“Ардуино? Роутер!? Я вас умоляю…”)
Заключение
В статье описаны не все детали настройки и некоторые вещи типа настроек автозапуска скриптов я намеренно опустил, пытаясь донести основные возможности и суть концепции. Недостающие детали можно узнать на страницах документации.
Конкретно это устройство и весь процесс его создания был экспериментом для проверки работы отдельных компонентов и технологий. В процессе возникали и воплощались идеи в других устройствах и системах, а кое-что перекочевало из-вне в этот проект, так что в целом время было потрачено далеко не зря. Буду рад, если мой опыт реализации окажется полезен.
Если развивать тему коммерческого применения концепции, то можно говорить о менее универсальных, но, скорее, прикладных реализациях. Например:
- Домашний сторож – сообщает владельцу о том, что кто-то пришёл домой и температуру в помещении
- Контроллер освещения – управление светом по расписанию/событию
- Климат-контроль – получение информации от внешних датчиков температуры/влажности и управление исполнительными механизмами
- Контроль самочувствия – отправление уведомления при нажатии на “тревожную” кнопку либо при отсутствии движения длительное время
Таким образом, имея одну и ту же базу можно создать множество прикладных “коробочных” решений, интегрируя подобные “Интернет-вещи” с информационными системами на более высоком уровне.
P.S. Долго думал выкладывать ли «живую» фотографию получившегося устройства, но про экспериментальный характер всей затеи я уже предупредил, так что картонный корпус (или его макет, если хотите) вполне соответствует:

P.P.S. Чуть не забыл, стоимость данного устройства со всеми перечисленными компонентами выходит около $60, потраченное время бесценно.
ссылка на оригинал статьи http://habrahabr.ru/post/224449/
Добавить комментарий