Ввод/вывод, изменение и визуализация геопространственных данных — задачи, общие для многих дисциплин. Поэтому многие заинтересованы в создании хороших инструментов для их решения. Набор инструментов для работы с пространственными данными постоянно растет. Мы поверхностно рассмотрим каждый из них. Подробности можно получить по ссылкам на cran или github.
Мы не пытаемся заменить уже существующие в R геопространственные библиотеки — скорее, дополнить и создать небольшие инструменты, позволяющие легко воспользоваться только необходимыми вам функциями.
geojsonio
geojsonio — инструмент для конвертации данных из и в формат geojson. Конвертируйте данные в/из GeoJSON из различных классов R: векторов, списков, пакетов данных (data frame), векторных файлов и пространственных классов.
Например:
library("geojsonio") geojson_json(c(-99.74, 32.45), pretty = TRUE)
#> { #> "type": "FeatureCollection", #> "features": [ #> { #> "type": "Feature", #> "geometry": { #> "type": "Point", #> "coordinates": [-99.74, 32.45] #> }, #> "properties": {} #> } #> ] #> }
wellknown
wellknown — инструмент для конвертации в и из текстовых данных в формате well-known. Конвертируйте WKT/WKB в GeoJSON и обратно. Включены функции конвертации между GeoJSON и WKT/WKB, создания GeoJSON-свойств, создания WKT/WKB из объектов R (например, списков, пакетов данных (data frame), векторов), сборки WKT.
Например:
library("wellknown") point(data.frame(lon = -116.4, lat = 45.2))
#> [1] "POINT (-116.4000000000000057 45.2000000000000028)"
gistr
gistr — это не геопространственный инструмент сам по себе, но он крайне полезен для совместного использования карт. Скажем, с помощью всего нескольких строчек можно поделиться интерактивной картой на GitHub.
Например, с помощью geojsonio
, описанного выше:
library("gistr") cat(geojson_json(us_cities[1:100,], lat = 'lat', lon = 'long'), file = "map.geojson") gist_create("map.geojson")
lawn
R-клиент для turf.js (расширенный геопространственный анализ для браузеров и модулей).
В lawn
есть функция для каждого метода в turf.js
. А также:
- несколько функций-оберток для модульного пакета geojson-random (создание случайных geojson-свойств);
- вспомогательная функция
view()
для легкой визуализации результатов вызоваlawn
-функций.
Например:
library("lawn") lawn_hex_grid(c(-96,31,-84,40), 50, 'miles') %>% view
geoaxe
R-клиент для разбиения геопространственных объектов на части.
Например:
library("geoaxe") library("rgeos") wkt <- "POLYGON((-180 -20, -140 55, 10 0, -140 -60, -180 -20))" poly <- rgeos::readWKT(wkt) polys <- chop(x = poly) plot(poly, lwd = 6, mar = c(0, 0, 0, 0))
И разделенный на части многогранник:
plot(polys, add = TRUE, mar = c(0, 0, 0, 0))
proj
cran github
R-клиент для proj4js, Javascript-библиотеки для проекций. proj
еще нет на CRAN.
getlandsat
cran github
R-клиент для получения «ландсат»-данных из публичных хранилищ AWS. getlandsat
еще нет на CRAN.
Например:
library("getlandsat") head(lsat_scenes())
#> entityId acquisitionDate cloudCover processingLevel #> 1 LC80101172015002LGN00 2015-01-02 15:49:05 80.81 L1GT #> 2 LC80260392015002LGN00 2015-01-02 16:56:51 90.84 L1GT #> 3 LC82270742015002LGN00 2015-01-02 13:53:02 83.44 L1GT #> 4 LC82270732015002LGN00 2015-01-02 13:52:38 52.29 L1T #> 5 LC82270622015002LGN00 2015-01-02 13:48:14 38.85 L1T #> 6 LC82111152015002LGN00 2015-01-02 12:30:31 22.93 L1GT #> path row min_lat min_lon max_lat max_lon #> 1 10 117 -79.09923 -139.66082 -77.75440 -125.09297 #> 2 26 39 29.23106 -97.48576 31.36421 -95.16029 #> 3 227 74 -21.28598 -59.27736 -19.17398 -57.07423 #> 4 227 73 -19.84365 -58.93258 -17.73324 -56.74692 #> 5 227 62 -3.95294 -55.38896 -1.84491 -53.32906 #> 6 211 115 -78.54179 -79.36148 -75.51003 -69.81645 #> download_url #> 1 https://s3-us-west-2.amazonaws.com/landsat-pds/L8/010/117/LC80101172015002LGN00/index.html #> 2 https://s3-us-west-2.amazonaws.com/landsat-pds/L8/026/039/LC80260392015002LGN00/index.html #> 3 https://s3-us-west-2.amazonaws.com/landsat-pds/L8/227/074/LC82270742015002LGN00/index.html #> 4 https://s3-us-west-2.amazonaws.com/landsat-pds/L8/227/073/LC82270732015002LGN00/index.html #> 5 https://s3-us-west-2.amazonaws.com/landsat-pds/L8/227/062/LC82270622015002LGN00/index.html #> 6 https://s3-us-west-2.amazonaws.com/landsat-pds/L8/211/115/LC82111152015002LGN00/index.html
siftgeojson
cran github
Делайте срезы GeoJSON так же легко, как получилось бы с пакетом данных (data frame). Это надстройка над jqr
, R-обертки для jq, обработчика JSON.
library("siftgeojson") # данные для примера file <- system.file("examples", "zillow_or.geojson", package = "siftgeojson") json <- paste0(readLines(file), collapse = "") # выбрать только округ Малтнома (Multnomah), проверить, что вернулся только округ Малтнома (Multnomah) sifter(json, COUNTY == Multnomah) %>% jqr::index() %>% jqr::dotstr(properties.COUNTY)
#> [ #> "Multnomah", #> "Multnomah", #> "Multnomah", #> "Multnomah", #> "Multnomah", #> "Multnomah", #> "Multnomah", #> "Multnomah", #> "Multnomah", ...
plotly
plotly — R-клиент для Plotly — веб-интерфейса и API для создания интерактивной графики.
library("plotly") plot_ly(iris, x = Petal.Length, y = Petal.Width, color = Species, mode = "markers")
Maptools Task View
Джефф Холлистер создал maptools task view для организации работы с картами в R: пакетов, источников данных, проекций, статичных и интерактивных карт, преобразований данных и т.д.
ссылка на оригинал статьи https://habrahabr.ru/post/281400/
Добавить комментарий