GPU в облаках

от автора

Нужно построить больше GPU

Deep Learning – одно из наиболее интенсивно развивающихся направлений в области машинного обучения.

Успехи исследований в области глубокого (глубинного) обучения вызывают за собой рост количества ML/DL-фреймворков (в т.ч. и от Google, Microsoft, Facebook), имплементирующих данные алгоритмы. За все возрастающей вычислительной сложностью DL-алгоритмов, и, как следствие, за увеличивающейся сложностью DL-фреймворков уже давно не угоняются аппаратные мощности ни настольных, ни даже серверных CPUs.

Выход нашли, и он простой (кажется таким) – использовать для такого типа compute-intensive-задач расчеты на GPU/FPGA. Но и тут проблема: можно, конечно, для этих целей использовать видеокарту любимого ноутбука, но какой русский data scientist не любит быстрой езды NVidia Tesla?

Подходов к владению высокопроизводительными GPU минимум два: купить (on-premises) и арендовать (on-demand). Как накопить и купить – тема не этой статьи. В этой — мы рассмотрим, какие предложения есть по аренде инстансов VM c высокопроизводительными GPU у облачных провайдеров Amazon Web Service и Windows Azure.

1. GPU in Azure

В начале августа 2016 года было объявлено о начале закрытого тестирования (private preview) инстансов виртуальных машин, оборудованных картами NVidia Tesla [1]. Эта возможность предоставляется в рамках сервиса Azure VMIaaS-сервис предоставляющий виртуальные машины по требованию (аналог Amazon EC2).

C точки зрения доступа приложения к графическому процессора архитектура сервиса выглядит так:

Azure VM GPU Instances Architecture

Расчеты на GPU доступны на виртуальных машинах серии N, которые, в свою очередь, делятся на 2 категории:

  • NC Series (computer-focused): GPU, нацеленные на вычисления;
  • NV Series (visualization-focused): GPU, нацеленные на графические расчеты.

1.1. NC Series VMs

Графические процессоры, предназначенные для compute-intensive нагрузки с использование CUDA/OpenCL. Графическими платами для них служат NVidia Tesla K80: 4992 CUDA ядра, >2.91/8.93 Tflops c двойной/одинарной точностью). Доступ к картам осуществляется с использованием технологии DDA (discrete device assignment), которая приближает производительность GPU при использовании через VM к bare-metal-производительности карты.

Как несложно догадаться, VM серии NC предназначены для ML/DL-задач.

В Azure доступны следующие конфигурации VM, оборудованных Tesla K80.

  NC6 NC12 NC24
Cores 6 (E5-2690v3) 12 (E5-2690v3) 24 (E5-2690v3)
GPU 1 x K80 GPU (1/2 Physical Card) 2 x K80 GPU (1 Physical Card) 4 x K80 GPU (2 Physical Cards)
Memory 56 GB 112 GB 224 GB
Disk 380 GB SSD 680 GB SSD 1.44 TB SSD

1.2. NV Series VMs

Виртуальные машины серии NV предназначены для визуализации. На данных VM стоят GPU Tesla M60 (4086 CUDA ядер, 36 потоков по 1080p H.264). Эти карты подойдут для задач (де)кодирования, рендеринга, 3D-моделирования.

Заявлено о доступности экземпляров VM со следующими конфигурациями:

  NV6 NV12 NV24
Cores 6 (E5-2690v3) 12 (E5-2690v3) 24 (E5-2690v3)
GPU 1 x M60 GPU (1/2 Physical Card) 2 x M60 GPU (1 Physical Card) 4 x M60 GPU (2 Physical Cards)
Memory 56 GB 112 GB 224 GB
Disk 380 GB SSD 680 GB SSD 1.44 TB SSD

1.3. Цены

Цены на N-Series Azure VM выглядят следующим образом (октябрь 2016) [5]:

azurevm gpu instances prices

Но пусть Ваше любопытство эти 4-ехзначные числа не уменьшают: как всегда, в облаке мы платим за использование ресурсов. Для IaaS-сервисов, каковым сервис Azure VM является, это стоит понимать, как почасовая тарификация. Кроме того, в Microsoft Azure есть много способов получить золото вычислительные ресурсы совершенно бесплатно.

Это распространяется на новые учетные записи в Azure, на студентов, на стартапы, если вы ищете лекарство от рака исследователь, или если Вы/компания, в которой Вы работаете, обладатель MSDN-подписки.

2. Amazon EC2 GPU Instances (+опасное сравнение)

Облачный провайдер Amazon Web Services (AWS) начал предоставлять инстансы VM с графическими процессорами еще в 2010 году.

Еще в начале сентября (2016) GPU-инстансы AWS были представлены только семейством G2.

Технические подробности о семействе инстансов G2

Конфигурации виртуальных машин семейства G2:

Model GPUs vCPU Mem (GiB) SSD Storage (GB) Price, per hour/month
g2.2xlarge 1 8 15 1 x 60 0.65/468
g2.8xlarge 4 32 60 2 x 120 2.6/1872

Инстансы G2 комплектуются графическими процессорами NVidia GRID K520 с 1556 CUDA-ядрами, поддержкой 4-ех видеопотоков 1080p H.264. Заявлено о поддержке CUDA/OpenCL. Также имеется поддержка технологии HVM (hardware virtual machine), которая по аналогии с DDA в Azure VM, минимизирует издержки, связанные с виртуализацией, позволяя на гостевой VM получать производительность GPU, близкую к bare-metal-производительности.

Пока я писал статью буквально месяц назад (конец сентября 2016) AWS анонсировали P2-инстансы, содержащие более современные графические карты.

Инстансы семейство P2 могут включать в себя до 8-ми карт NVIDIA Tesla K80. Заявлено о поддержке CUDA 7.5, OpenCL 1.2. Инстансы p2.8xlarge и p2.16xlarge поддерживают высокоскоростное GPU-to-GPU соединение, а для локальной сети доступно соединение до 20 Gbps по технологии ENA (Elastic Network Adapter – высокоскоростной сетевой интерфейс для Amazon EC2).

Instance Name GPU Cores vCPU Cores Memory, Gb CUDA Cores GPU Memory Network, Gbps
p2.xlarge 1 4 61 2496 12 High
p2.8xlarge 8 32 488 19968 96 10
p2.16xlarge 16 64 732 39936 192 20

Для сравнения возьмем самый производительный (NC24) и самый бюджетный (NC6) инстансы в Azure VM и, ближайшие по производительности к ажуровским, инстансы в Amazon EC2.

Instance Family GPU Model GPU Cores vCPU Core RAM, Gb Network, Gbps CUDA/OpenCL Status Price, $/mo Price, $ per GPU/mo
Amazon p2.xlarge K80 1 4 61 High 7.5/1.2 GA 306 306
Azure NC6 K80 1 6 56 10 (?) +/+ Private preview 461 461
Amazon p2.8xlarge K80 8 32 488 10 7.5/1.2 GA 2448 306
Azure NC24 K80 8 24 224 10 (?) +/+ Private preview 1882 235

Заключение

AWS долго «мучали» data-science-сообщество довольно слабенькими и вместе с тем дорогими GPU-инстансами семейства G2. Но конкуренция на рынке облачных провайдеров сделала свое дело – месяц назад появились GPU-инстансы семейства P2, и выглядят они очень достойно.

Microsoft Azure также долго мучали коммьюнити вообще отсутствием GPU-инстансов (эта была одна из самых ожидаемых возможностей платформы Azure). На текущий момент GPU-инстансы в Azure выглядят крайне неплохо, хотя и не достает технических подробностей. Рreview-статус этой возможности – большой минус обычный этап в жизненном цикле большинства облачных сервисов.

Вообще Microsoft буквально за год-два серьезно обросла различными AI-технологиями / фреймворками/ инструментами, и в том числе (может — в первую очередь) для разработчиков и data scientist’ов. Насколько это все серьезно и удобно можно оценить самостоятельно, посмотрев записи с прошедшего в конце сентября Microsoft ML & DS Summit [6].

Кроме того, ровно через неделю – 1 ноября – пройдет конференция Microsoft DevCon School, один из треков которой полностью посвящен машинному обучению. И рассказывать там будут не исключительно про проприетарные технологии MS, а про привычные и «свободные» Python, R, Apache Spark.

Список источников

  1. NVIDIA GPUs in Azure: регистрация в preview-программе.
  2. Leveraging NVIDIA GPUs in Azure. Вебкаст на Channel 9.
  3. Linux GPU Instances: документация.
  4. Анонс P2-инстансов в AWS, 29 сентября 2016.
  5. Цены на Azure Virtual Machines (в т.ч. Azure VM GPU).
  6. Конференция Microsoft Machine Learning & Data Science Summit.

ссылка на оригинал статьи https://habrahabr.ru/post/313478/


Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *