Как я сделал тестер-оптимизатор для нахождения прибыльных стратегий на Бирже — 2

от автора

Multidimensional Space Trading Strategies
Рис. 1. Оптимизация многомерного пространства алгоритмов торговых стратегий.

Оптимизация торговых стратегий

В процессе алгоритмической торговли постоянно возникает необходимость настройки параметров алгоритмов торговых стратегий. Сочетания всех возможных параметров превращается в большое многомерное пространство вариантов стратегий. Чтобы получить самые прибыльные и стабильные стратегии нужно исследовать это пространство и подобрать оптимальные параметры для торговли.

Самый лучший способ исследования любого множества — это полный перебор всех его элементов Brute Force. Однако учитывая колоссальные объемы данных с которыми приходится сталкиваться при оптимизации, как правило, оказывается просто невозможно провести подобное исследование полным перебором. Приходится применять различные аналитические алгоритмы, которые позволяют сократить фактический объем исследований в процессе поиска экстремумов.

Большинство таких алгоритмов хорошо известны: метод Монте-Карло, метод градиентного спуска, метод имитации отжигаэволюционные алгоритмы и т.д. При этом существуют различные модификации данных алгоритмов оптимизации. В алготрейдинге, как правило, встречаются реализации генетических алгоритмов и Монте-Карло. Так или иначе все эти алгоритмы используют «магию случайных чисел» или научно говоря нелинейную стохастическую оптимизацию.

Классическая проблема стохастических алгоритмов оптимизации заключается в том, что при не больших объемах фактических исследований и малых выборках они не репрезентативны. Например, Монте-Карло не эффективен в многоэкстремальном пространстве, он акцентирует исследование на глобальном экстремуме упуская из вида локальные, но не менее интересные экстремумы. Алгоритм не ставит перед собой таких задач, ему просто нужно найти самую прибыльную стратегию. Генетический алгоритм также может пойти не удачной веткой мутаций и остановиться на каком-нибудь локальном экстремуме и т.д.
Все потому, что данным алгоритмам оптимизации на начальных этапах приходится принимать решения на ограниченном объеме данных в еще не изученном пространстве и из исследования могут легко выпасть важные области. Чтобы этого избежать нужно увеличивать выборки данных и время исследования, а в нашем случае время на вес золота. Нужно при минимальных затратах времени максимально подробно исследовать экстремумы пространства. При этом в быстро меняющихся условиях биржевой торговли важно уделять внимание не только прибыльным, но и стабильным параметрам торговых стратегий. Под стабильными понимаются параметры формирующие кластеры с похожими результатами. Прибыльные стратегии, находящиеся вне кластеров, могут оказаться не стабильными и привести к серьезным убыткам. В свою очередь стратегия из кластера в меньшей степени подвержена изменениям на рынке.

Метод стохастической кластерной оптимизации

Учитывая особенности оптимизации биржевых стратегий был разработан гибридный алгоритм (см. прошлую статью) у которого оказался один приятный побочный эффект — он успешно выделял и исследовал кластеры. Я дал название полученному алгоритму — «Метод стохастической кластерной оптимизации».

Процесс исследования поэтому алгоритму проходит в два этапа:

  1. Исследование пространства стратегий с удалением убыточных и подверженных риску областей
  2. Подробное исследование экстремумов и кластеров пространства

Этап 1. Исследование пространства стратегий с удалением убыточных и подверженных риску областей.

Чтобы избавиться от неопределенности при нехватке данных на начальных этапах исследования алгоритм не ставит задачу поиска прибыльных стратегий, а наоборот, ищет самые убыточные и удаляет их из пространства вместе с пограничными с ними областями с потенциально высокими рисками убытков.

Работа ведется в следующем порядке:

  • Формируется многомерное пространство из всех возможных параметров торговой стратегии.
  • Из пространства случайно выбираются стратегии и тестируются на исторических данных с указанными параметрами.
  • По результатам тестирования вокруг самых убыточных стратегий удаляются пограничные микрообласти. Тем самым уменьшается пространство исследования и делается акцент на более прибыльные и стабильные области в дальнейших итерациях.
  • Итерации тестирования проводятся до тех пор, пока пространство стратегий не будет исследовано в нужной степени

На Рис. 2 видно, как исследование смещается в сторону экстремумов при этом риск упустить маленькие кластеры с возможно хорошими и стабильными параметрами минимален.

Stochastic Cluster Optimization - Extrema Focused

Рис. 2. Первый этап алгоритма «Stochastic Cluster Optimization» — исследование пространства стратегий.

Этап 2. Подробное исследование кластеров и экстремумов.

После первого этапа исследования становятся хорошо виды экстремумы. Однако, в силу особенностей алгоритма (вырезается множество микрообластей) пространство получается «рваным» и некоторые экстремумы могут быть исследованы не очень подробно. Чтобы полностью изучить все интересные кластеры алгоритм оптимизации начинает процесс исследования в точности наоборот. Для этого выбираются все лучшие стратегии и вокруг них дополнительно выделяются микрообласти. Если в этих областях обнаруживаются еще не исследованные стратегии, то они дополнительно тестируются (см. Рис. 3).

Extrema Map

Рис. 3. Второй этап алгоритма «Stochastic Cluster Optimization» — подробное исследование экстремумов.

В результате после работы алгоритма исследуются все интересные нам области пространства и подробно тестируются кластеры с прибыльными стратегиями. При этом фактический объем исследования, как правило, составляет не более 25-50% от общего объема пространства вариантов стратегий (см. Рис. 4).

Stochastic Cluster Optimization Brute Force

Рис. 4. Скорость исследования алгоритма «Stochastic Cluster Optimization» (слева) в 2-4 раза выше скорости алгоритма «Brute Force» (справа).

Walk Forward оптимизация

Казалось бы оптимизировали параметры и можно начинать торговать. Однако на этом процесс иссдедования еще не завершается. Процесс оптимизации подвержен риску «подгонки» или переоптимизации параметров под используемые в процессе исторические данные, поэтому нужно дополнительно проверить полученные результаты. Для этого используется метод Walk Forward. Суть метода заключается в том, что параметры стратегий тестируются на исторических данных отличных от тех, которые использовались в процессе оптимизации.

Для этого весь диапазон исторических данных разбивается на выборки, состоящие из наборов:

  • IS («In Sample») — выборка, используемая для оптимизации
  • OOS («Out Of Sample») — выборка, используемая для тестирования результатов оптимизации

Причем диапазоны выборок формируются таким образом, чтобы данные OOS следовали последовательно друг за другом (см. Рис. 5).

Walk Forward Optimization

Рис. 5. Схема Walk Forward оптимизации.

Для уменьшения объемов исследования на этапах проверки результатов, можно после оптимизации сразу отфильтровать стратегии с плохими показателями, тем самым сокращая общее время тестирования. В результате такой проверки мы получим объективные параметры торговых стратегий, защищенные от переоптимизации (см. Рис. 6 и Рис. 7).

In Sample

Рис. 6. Результаты оптимизации на данных «In Sample».

Out Of Sample

Рис. 7. Проверка результатов оптимизации на данных «Out Of Sample».

Анализ результатов

Как правило после проверки по методу Walk Forward большая часть торговых стратегий выглядит уже не так привлекательно, как после оптимизации. В идеальном варианте стратегии должны подтвердить свои статистические показатели, а экстремумы и кластеры сохранить свою форму и положение в пространстве.

Для комфортного анализа полученных результатов я визуализировал многомерное пространство стратегий по каждому параметру в формате тепловой карты (см. Рис. 8). По карте визуально оцениваются форма и размеры кластеров, положение экстремумов, проверяется влияние параметров на результативность стратегии, оцениваются изменения после проверки на переоптимизацию и т.д.

Space-section Sharpe Ratio

Рис. 8. Пример сечения пространства по оптимизируемым параметрам и целевой функции.

Для комплексной оценки результатов Walk Forward оптимизации строится матрица со всеми шагами и параметрами, прошедшими фильтрацию. Зеленым цветом выделяются шаги, на которых параметры подтвердили свои показатели и красным, соответственно, если не подтвердили. Параметры, показавшие себя хорошо на большом количестве шагов можно считать более пригодными для торговли (см. Рис. 9).

Walk Forward Matrix

Рис. 9. Матрица Walk Forward со всеми результатами провеки на данных OOS.

В случае необходимости полученные результаты можно экспортировать в сторонние системы анализа для более детального исследования. Например, в R, Excel или Mathlab (см. Рис. 10).

Export to Excel

Рис. 10. Экспорт результатов оптимизации в Excel.

Чтобы окончательно убедиться в правильности выборанных параметров проводятся детальные тесты стратегий, оценивается плавность кривой доходности, выводятся заявки на график и изучается лог торговых сделок (см. Рис. 11).

Analyzer

Рис. 11. Подробный анализ параметров торговой стратегии.

Заключение

После оптимизации и всех проверок у нас останутся стратегии потенциально пригодные к реальной торговле на Бирже.

Наконец мы все перепроверили, наверное, уже можно начинать торговать? На самом деле мы только на полпути, еще рано отправлять торговые алгоритмы в бой. Далее предстоит:

  • Проверить стратегии на «живых» данных с Биржи для подтверждения показателей, полученных во время тестирования.
  • Сформировать портфель из торговых стратегий для диверсификации рисков. Кстати, его тоже нужно оптимизировать.
  • В процессе реальной торговли периодически сводить полученные результаты с результатами тестов для корректировки настроек тестера-оптимизатора.

Но об этом, наверное, в другой раз.
Всем удачной торговли!
ссылка на оригинал статьи https://habrahabr.ru/post/324430/


Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *