Введение
Наиболее распространённым уравнением эллиптического типа является уравнение Пуассона.
К решению этого уравнения сводятся многие задачи математической физики, например задачи о стационарном распределении температуры в твердом теле, задачи диффузии, задачи о распределении электростатического поля в непроводящей среде при наличии электрических зарядов и многие другие.
Для решения эллиптических уравнений в случае нескольких измерений используют численные методы, позволяющие преобразовать дифференциальные уравнения или их системы в системы алгебраических уравнений. Точность решения определяется шагом координатной сетки, количеством итераций и разрядной сеткой компьютера [1]
Цель публикации получить решение уравнения Пуассона для граничных условий Дирихле и Неймана, исследовать сходимость релаксационного метода решения на примерах.
Уравнение Пуассона относится к уравнениям эллиптического типа и в одномерном случае имеет вид [1]:
(1)
где x – координата; u(x) – искомая функция; A(x), f(x) – некоторые непрерывные функции координаты.
Решим одномерное уравнение Пуассона для случая А = 1, которое при этом принимает вид:
(2)
Зададим на отрезке [xmin, xmax] равномерную координатную сетку с шагом ∆х:
(3)
Граничные условия первого рода (условия Дирихле) для рассматриваемой задачи могут быть представлены в виде:
(4)
где х1, xn – координаты граничных точек области [xmin, xmax]; g1, g2 – некоторые
константы.
Граничные условия второго рода (условия Неймана) для рассматриваемой задачи могут быть представлены в виде:
(5)
Проводя дискретизацию граничных условий Дирихле на равномерной координатной сетке (3) с использованием метода конечных разностей, получим:
(6)
где u1, un – значения функции u(x) в точках x1, xn соответственно.
Проводя дискретизацию граничных условий Неймана на сетке (3), получим:
(7)
Проводя дискретизацию уравнения (2) для внутренних точек сетки, получим:
(8)
где ui, fi – значения функций u(x), f(x) в точке сетки с координатой xi.
Таким образом, в результате дискретизации получим систему линейных алгебраических уравнений размерностью n, содержащую n – 2 уравнения вида (8) для внутренних точек области и уравнения (6) и (7) для двух граничных точек [1].
Ниже приведен листинг на Python численного решения уравнения (2) с граничными условиями (4) – (5) на координатной сетке (3).
from numpy import* from numpy.linalg import solve import matplotlib.pyplot as plt x0=0#Начальная координата области решения xn=5#Конечная координата области решения n=100#Число точек координатной сетки dx=(xn-x0)/(n-1)#Задание равномерной координатной сетки с шагом dx x=[i*dx+x0 for i in arange(0,n,1)]#Задание равномерной координатной сетки с шагом dx def f(i):#Функция правой части уравнения return 2*sin(x[i]**2)+cos(x[i]**2) v1=1.0#Вид ГУ на левой границе (1 - Дирихле, 2 - Неймана) g1=0.0#Значение ГУ на левой границе v2=2.0#'Вид ГУ на правой границе (1 - Дирихле, 2 - Неймана) g2=-0.5#Значение ГУ на правой границе a=zeros([n,n])#Задание матрицы коэффициентов СЛАУ размерностью n x n b=zeros([1,n])# Задание матрицы-строки свободных членов СЛАУ размерностью 1 x n #Определение коэффициентов и свободных членов СЛАУ, # соответствующих граничным условиям и проверка корректности #значений параметров v1, v2 b[0,n-1]=g1; if v1==1: a[0,0]=1 elif v1==2: a[0,0]=-1/dx a[0,1]=1/dx; else: print('Параметр v1 имеет неправильное значение') b[0,n-1]=g2; if v2==1: a[n-1,n-1]=1 elif v2==2: a[n-1,n-1]=1/dx a[n-1,n-2]=-1/dx; else: print('Параметр v2 имеет неправильное значение') #Определение коэффициентов и свободных членов СЛАУ, # соответствующих внутренним точкам области for i in arange(1, n-1,1): a[i,i]=-2/dx**2 a[i,i+1]=1/dx**2 a[i,i-1]=1/dx**2 b[0,i]=f(i) u=linalg.solve(a,b.T).T#Решение СЛАУ def viz(v1,v2): if v1==v2==1: return "ГУ Дирихле на левой и ГУ Дирихле на правой границе " elif v1==1 and v2==2: return "ГУ Дирихле на левой и ГУ Неймана на правой границе " elif v2==1 and v2==1: return "ГУ Неймана на левой и ГУ Дирихле на правой границе " plt.figure() plt.title("График функции правой части уравнения Пуассона") y=[f(i) for i in arange(0,n,1)] plt.plot(x,y) plt.grid(True) plt.xlabel('x') plt.ylabel('f(x)') plt.figure() plt.title("График искомой функции уравнения Пуассона") plt.xlabel('x') plt.ylabel('u(x)') plt.plot(x,u[0,:],label='%s'%viz(v1,v2)) plt.legend(loc='best') plt.grid(True) plt.show()
Получим:
Разработанная мною на Python программа удобна для анализа граничных условий.Приведенный алгоритм решения на Python использует функцию Numpy — u=linalg.solve(a,b.T).T для решения системы алгебраических уравнений, что повышает быстродействие при квадратной матрице {a}. Однако при росте числа измерений необходимо переходить к использованию трех диагональной матрицы решение для которой усложняется даже для очень простой задачи, вот нашёл на форуме такой пример:
from __future__ import print_function from __future__ import division import numpy as np import time ti = time.clock() m = 1000 A = np.zeros((m, m)) B = np.zeros((m, 1)) A[0, 0] = 1 A[0, 1] = 2 B[0, 0] = 1 for i in range(1, m-1): A[i, i-1] = 7 A[i, i] = 8 A[i, i+1] = 9 B[i, 0] = 2 A[m-1, m-2] = 3 A[m-1, m-1] = 4 B[m-1, 0] = 3 print('A \n', A) print('B \n', B) x = np.linalg.solve(A, B) # solve A*x = B for x print('x \n', x) print('NUMPY time', time.clock()-ti, 'seconds')
Программа численного решения на равномерной по каждому направлению сетки задачи Дирихле для уравнения конвекции-диффузии
[2]
(9)
Используем аппроксимации центральными разностями для конвективного слагаемого и итерационный метод релаксации.для зависимость скорости сходимости от параметра релаксации при численном решении задачи с /(х) = 1 и 6(х) = 0,10. В сеточной задаче:
(10)
Представим матрицу А в виде суммы диагональной, нижней треугольной и верхней треугольных матриц:
(10)
Метод релаксации соответствует использованию итерационного метода:
(11)
При \ говорят о верхней релаксации, при
— о нижней релаксации.
from numpy import * """ Численное решение задачи Дирихле для уравнения конвекции-диффузии в прямоугольнике.Метод релаксации.""" def relaxation(b, f, I1, I2, n1, n2, omega, tol = 1.e-8): h1 = I1 / n1 h2 = I2 / n2 d = 2. / h1**2 + 2. / h2**2 y = zeros([n1+1, n2+1]) ff = zeros([n1+1, n2+1]) bb = zeros([n1+1, n2+1]) for j in arange(1,n2,1): for i in arange(1,n1,1): ff [i,j] = f(i*h1, j*h2) bb[i,j] = b(i*h1, j*h2) #максимальное число итераций - 10000 for k in arange(1, 10001,1): rn = 0. for j in arange(1,n2,1): for i in arange(1,n1,1): rr = - (y[i-1,j] - 2.*y [i, j] + y[i+1,j]) / h1**2 \ - (y[i,j-1] - 2.*y [i,j] + y[i,j+1]) / h2**2 \ + bb[i,j]*(y [i+1,j] - y [i-1,j]) / (2.*h1) - ff [i,j] rn = rn + rr**2 y[i,j] = y[i,j] - omega * rr / d rn = rn*h1*h2 if rn < tol**2: return y, k print ('Метод релаксации не сходиться:') print ('после 10000 итерации остаток=',sqrt(rn)) import matplotlib.pyplot as plt bcList = [0., 10.] sglist = ['-','--'] kk = 0 for bc in bcList: I1 = 1. I2 = 1. def f(x,y): return 1. def b(x,y): return bc n1 = 25 n2 = 25 m = 20 om = linspace(1., 1.95, m) it = zeros(([m])) for k in arange(0,m,1): omega = om[k] y, iter = relaxation(b, f, I1, I2, n1, n2, omega, tol=1.e-6) it[k] = iter s1= 'b =' + str(bc) sg = sglist[kk] kk = kk+1 plt.plot( om,it, sg, label = s1) plt.title("Число итераций метода релаксации\n для приближённого решения эллиптической задачи\n с использованием заданного параметра релаксации $\\omega$") plt.xlabel('$\\omega$') plt.ylabel('iterations') plt.legend(loc=0) plt.grid(True) plt.show(
)
Получим:
На графике показана зависимость числа итераций от параметра релаксации для уравнения Пуассона (b(х) = 0) и уравнения конвекции-диффузии (b(х) = 10). Для сеточного уравнения Пуассона оптимальное значении параметра релаксации находится аналитически, а итерационный метод сходиться при .
Выводы:
- Приведено решение эллиптической задачи на Python с гибкой системой установки граничных условий
- Показано что метод релаксации имеет оптимальный диапазон (
) параметра релаксации.
Ссылки:
- Рындин Е.А. Методы решения задач математической физики. – Таганрог:
Изд-во ТРТУ, 2003. – 120 с. - Вабищевич П.Н.Численные методы: Вычислительный практикум. — М.: Книжный дом
«ЛИБРОКОМ», 2010. — 320 с.
ссылка на оригинал статьи https://habr.com/post/418981/
Добавить комментарий