Обзор методов создания эмбедингов предложений, Часть2

от автора

Здравствуйте, продолжение статьи про методы создания эмбедингов предложений. В этом гайде мало слов и много кода, готово для Ctrl+с, Ctrl+v для удучшений и дальнейших тестов.
Часть1 обязательна для ознакомления

4. BERT

from deeppavlov.core.common.file import read_json from deeppavlov import build_model, configs from deeppavlov.models.embedders.elmo_embedder import ELMoEmbedder # ссылка для скачивания моделей http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html

4.1 rubert_cased_L-12_H-768_A-12_pt

class RU_BERT_CLASS:     def __init__(self, name):         bert_config = read_json(configs.embedder.bert_embedder)         bert_config['metadata']['variables']['BERT_PATH'] = os.path.join('./.', name)         self.m = build_model(bert_config)      def vectorizer(self, sentences):         return [sentence.split() for sentence in sentences]      def predict(self, tokens):         _, _, _, _, sent_max_embs, sent_mean_embs, _ = self.m(tokens)         return sent_mean_embs  bert = RU_BERT_CLASS('rubert_cased_L-12_H-768_A-12_pt') get_similarity_values = similarity_values_wrapper(bert.predict, bert.vectorizer, distance_function=cosine_distances) evaluate(get_similarity_values, 'rubert')

‘rubert: 2895.7’

4.2 ru_conversational_cased_L-12_H-768_A-12_pt

bert = RU_BERT_CLASS('ru_conversational_cased_L-12_H-768_A-12_pt') get_similarity_values = similarity_values_wrapper(bert.predict, bert.vectorizer, distance_function=cosine_distances) evaluate(get_similarity_values, 'ru_conversational')

‘ru_conversational: 3559.1’

4.3 sentence_ru_cased_L-12_H-768_A-12_pt

bert = RU_BERT_CLASS('sentence_ru_cased_L-12_H-768_A-12_pt') get_similarity_values = similarity_values_wrapper(bert.predict, bert.vectorizer, distance_function=cosine_distances) evaluate(get_similarity_values, 'sentence_ru')

‘sentence_ru: 2660.2’

4.4 elmo_ru-news_wmt11-16_1.5M_steps

class ELMO_CLASS(RU_BERT_CLASS):     def __init__(self, name):         self.m = ELMoEmbedder(f"http://files.deeppavlov.ai/deeppavlov_data/{name}")      def predict(self, tokens):         return self.m(tokens)

elmo = ELMO_CLASS('elmo_ru-news_wmt11-16_1.5M_steps.tar.gz') get_similarity_values = similarity_values_wrapper(elmo.predict, elmo.vectorizer, distance_function=cosine_distances) evaluate(get_similarity_values, 'elmo_ru-news')

‘elmo_ru-news: 4631.3’

4.5 elmo_ru-wiki_600k_steps

elmo = ELMO_CLASS('elmo_ru-wiki_600k_steps.tar.gz') get_similarity_values = similarity_values_wrapper(elmo.predict, elmo.vectorizer, distance_function=cosine_distances) evaluate(get_similarity_values, 'elmo_ru-wiki')

‘elmo_ru-wiki: 4507.6’

4.6 elmo_ru-twitter_2013-01_2018-04_600k_steps

elmo = ELMO_CLASS('elmo_ru-twitter_2013-01_2018-04_600k_steps.tar.gz') get_similarity_values = similarity_values_wrapper(elmo.predict, elmo.vectorizer, distance_function=cosine_distances) evaluate(get_similarity_values, 'elmo_ru-twitter')

‘elmo_ru-twitter: 2962.2’

plot_results()

png

5. Автоэнкодеры

Автоэнкодеры созданы для сжатия многомерного ветора до одномерного и, теоретически, должны идеально подойти для создания эмбедингов предложения.

5.1 Автоэнкодер embedings -> embedings

def models_builder(data_generator):     def cosine_loss(y_true, y_pred):         return K.mean(cosine_similarity(y_true, y_pred, axis=-1))      complexity = 300     inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))     X = inp     X = Bidirectional(LSTM(complexity, return_sequences=True))(X)     X = Bidirectional(LSTM(int(complexity/10), return_sequences=True))(X)     X = Flatten()(X)     X = Dense(complexity, activation='elu')(X)     X = Dense(complexity, activation='elu')(X)     X = Dense(complexity, activation='linear', name='embeding_output')(X)     X = Dense(complexity, activation='elu')(X)     X = Dense(data_generator.max_len*complexity, activation='elu')(X)     X = Reshape((data_generator.max_len, complexity))(X)     X = Bidirectional(LSTM(complexity, return_sequences=True))(X)     X = Bidirectional(LSTM(complexity, return_sequences=True))(X)     X = Dense(data_generator.embedding_size, activation='elu')(X)     autoencoder = Model(inputs=inp, outputs=X)     autoencoder.compile(loss=cosine_loss, optimizer='adam')     autoencoder.summary()      embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)     return autoencoder, embedder  data_generator = EmbedingsDataGenerator(use_fasttext=False) autoencoder, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize, distance_function=cosine_distances)

new_result = -10e5 for i in tqdm(range(1000)):     if i%3==0:         previous_result = new_result         new_result = evaluate(get_similarity_values, 'автоэнкодер embedings -> embedings')         new_result = parse_result(new_result)         print(i, new_result)         if new_result < previous_result and i > 20:             break     for x, y in data_generator:         autoencoder.train_on_batch(x, x)

0 1770.2
3 212.6
6 138.8
9 84.8
12 78.1
15 106.4
18 112.7
21 79.7

5.2 Автоэнкодер embedings -> indexes

def models_builder(data_generator):     complexity = 300     inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))     X = inp     X = Bidirectional(LSTM(complexity, return_sequences=True))(X)     X = Bidirectional(LSTM(int(complexity/10), return_sequences=True))(X)     X = Flatten()(X)     X = Dense(complexity, activation='elu')(X)     X = Dense(complexity, activation='elu')(X)     X = Dense(complexity, activation='linear', name='embeding_output')(X)     X = Dense(complexity, activation='elu')(X)     X = Dense(data_generator.max_len*complexity, activation='elu')(X)     X = Reshape((data_generator.max_len, complexity))(X)     X = Bidirectional(LSTM(complexity, return_sequences=True))(X)     X = Bidirectional(LSTM(complexity, return_sequences=True))(X)     X = Dense(len(data_generator.token2index), activation='softmax')(X)     autoencoder = Model(inputs=inp, outputs=X)     autoencoder.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])     autoencoder.summary()      embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)     return autoencoder, embedder  data_generator = IndexesDataGenerator() autoencoder, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5 for i in tqdm(range(1000)):     if i%3==0:         previous_result = new_result         new_result = evaluate(get_similarity_values, 'автоэнкодер embedings -> indexes')         new_result = parse_result(new_result)         print(i, new_result)         if new_result < previous_result and i > 20:             break     for x_e, x_i, y_i in data_generator:         autoencoder.train_on_batch(x_e, x_i)

0 1352.9
3 43.6
6 41.7
9 8.1
12 -5.6
15 43.1
18 36.1
21 -3.7

5.3 Автоэнкодер архитектура LSTM -> LSTM

def models_builder(data_generator):     def cosine_loss(y_true, y_pred):         return K.mean(cosine_similarity(y_true, y_pred, axis=-1))      complexity = 300     inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))     X = inp     X, state_h, state_c = LSTM(complexity, return_state=True)(X)     X = Concatenate()([state_h, state_c])     X = Dense(complexity, activation='linear', name='embeding_output')(X)      state_c = Dense(complexity, activation='linear')(X)     state_h = Dense(complexity, activation='linear')(X)     inp_zeros = Input(shape=(data_generator.max_len, data_generator.embedding_size))      X = LSTM(complexity, return_sequences=True)(inp_zeros, [state_c, state_h])     X = Dense(data_generator.embedding_size, activation='linear')(X)      autoencoder = Model(inputs=[inp, inp_zeros], outputs=X)     autoencoder.compile(loss=cosine_loss, optimizer='adam')     autoencoder.summary()      embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)     return autoencoder, embedder  data_generator = EmbedingsDataGenerator(use_fasttext=False) autoencoder, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, data_generator.max_len, data_generator.embedding_size)) new_result = -10e5 for i in tqdm(range(1000)):     if i%3==0:         previous_result = new_result         new_result = evaluate(get_similarity_values, 'автоэнкодер embedings -> indexes')         new_result = parse_result(new_result)         print(i, new_result)         if new_result < previous_result and i > 20:             break     for x, y in data_generator:         autoencoder.train_on_batch([x, zeros], x)

0 1903.6
3 1299.3
6 313.5
9 445.3
12 454.9
15 447.7
18 454.5
21 448.1

5.4 Автоэнкодер архитектура LSTM -> LSTM -> indexes

def models_builder(data_generator):     complexity = 300     inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))     X = inp     X, state_h, state_c = LSTM(complexity, return_state=True)(X)     X = Concatenate()([state_h, state_c])     X = Dense(complexity, activation='linear', name='embeding_output')(X)     state_c = Dense(complexity, activation='linear')(X)     state_h = Dense(complexity, activation='linear')(X)     inp_zeros = Input(shape=(data_generator.max_len, data_generator.embedding_size))      X = LSTM(complexity, return_sequences=True)(inp_zeros, [state_c, state_h])     X = Dense(len(data_generator.token2index), activation='softmax')(X)      autoencoder = Model(inputs=[inp, inp_zeros], outputs=X)     autoencoder.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])     autoencoder.summary()      embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)     return autoencoder, embedder  data_generator = IndexesDataGenerator() autoencoder, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, data_generator.max_len, data_generator.embedding_size)) new_result = -10e5 for i in tqdm(range(1000)):     if i%3==0:         previous_result = new_result         new_result = evaluate(get_similarity_values, 'автоэнкодер архитектура LSTM -> LSTM -> indexes')         new_result = parse_result(new_result)         print(i, new_result)         if new_result < previous_result and i > 20:             break     for x_e, x_i, y_i in data_generator:         autoencoder.train_on_batch([x_e, zeros], x_i)

0 1903.6
3 1483.3
6 1249.3
9 566.3
12 789.2
15 702.3
18 480.5
21 552.3
24 533.0

Методы с учителем

6. Эмбединги на Transfer Learning

TEXTS_CORPUS_WITH_LABEL = [(sentence, topic) for topic in texts_for_training for sentence in texts_for_training[topic]]  class BowDataGenerator(EmbedingsDataGenerator):     def __init__(self, texts_topics=TEXTS_CORPUS_WITH_LABEL, batch_size=128, batches_per_epoch=100):         self.texts_topics = texts_topics         self.topic2index = {topic: index for index, topic in enumerate({topic for text, topic in self.texts_topics})}         self.batch_size = batch_size         self.batches_per_epoch = batches_per_epoch         self.count_vectorizer = CountVectorizer().fit([text_topic[0] for text_topic in self.texts_topics])         counts = Counter([text_topic[1] for text_topic in self.texts_topics])         self.class_weight = {self.topic2index[intent_id]:1/counts[intent_id] for intent_id in counts}      def vectorize(self, sentences):         return self.count_vectorizer.transform(sentences).toarray()      def __iter__(self):         for _ in tqdm(range(self.batches_per_epoch), leave=False):             X_batch = []             y_batch = []             finished_batch = False             while not finished_batch:                 text, topic = random.choice(self.texts_topics)                 X_batch.append(text)                 y_batch.append(self.topic2index[topic])                  if len(X_batch) >= self.batch_size:                     X_batch = self.count_vectorizer.transform(X_batch).toarray()                     y_batch = to_categorical(y_batch, num_classes=len(self.topic2index))                     yield np.array(X_batch), np.array(y_batch)                     finished_batch = True  data_generator = BowDataGenerator()

6.1 Эмбединги на основе BOW

def models_builder(data_generator):     complexity = 500     inp = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))     X = inp     X = Dense(complexity)(X)     X = Activation('elu')(X)     X = Dense(complexity)(X)     X = Activation('elu')(X)     X = Dense(complexity, name='embeding_output')(X)     X = Activation('elu')(X)     X = Dense(len(data_generator.topic2index), activation='softmax')(X)      model = Model(inputs=inp, outputs=X)     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])     model.summary()      embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)     return model, embedder  data_generator = BowDataGenerator() model, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5 for i in tqdm(range(1000)):     if i%3==0:         previous_result = new_result         new_result = evaluate(get_similarity_values, 'ембединг на BOW')         new_result = parse_result(new_result)         print(i, new_result)         if new_result < previous_result and i > 20:             break     for x, y in data_generator:         model.train_on_batch(x, y, class_weight=data_generator.class_weight)

0 601.4
3 1175.4
6 1187.0
9 1175.9
12 1097.9
15 1083.4
18 1083.8
21 1060.5

6.2 Эмбединг на LSTM + MaxPooling (InferSent)

Сыылки на стать:
Arxiv с теорией
Объяснено по-человечески

class LabelsDataGenerator(EmbedingsDataGenerator):     def __init__(self, texts_topics=TEXTS_CORPUS_WITH_LABEL, target_len=20, batch_size=128, batches_per_epoch=100, use_word2vec=True, use_fasttext=True):         self.texts_topics = texts_topics         self.topic2index = {topic: index for index, topic in enumerate({topic for text, topic in self.texts_topics})}         self.target_len = target_len         self.batch_size = batch_size         self.batches_per_epoch = batches_per_epoch         self.use_word2vec = use_word2vec         self.use_fasttext = use_fasttext         self.embedding_size = len(vectorize('token', use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext))         counts = Counter([text_topic[1] for text_topic in self.texts_topics])         self.class_weight = {self.topic2index[intent_id]:1/counts[intent_id] for intent_id in counts}             def vectorize(self, sentences):         vectorized = []         for text in sentences:             tokens = str(text).split()             x_vec = []             for token in tokens:                 token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)                                        x_vec.append(token_vec)             vectorized.append(x_vec)          vectorized = pad_sequences(vectorized, maxlen=self.target_len)         return vectorized      def __iter__(self):         for _ in tqdm(range(self.batches_per_epoch), leave=False):             X_batch = []             y_batch = []             finished_batch = False             while not finished_batch:                 text, topic = random.choice(self.texts_topics)                 tokens = text.split()                 x_vec = []                 for token in tokens:                     token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)                     if len(x_vec) >= self.target_len:                         X_batch.append(x_vec)                         y_batch.append(self.topic2index[topic])                         if len(X_batch) >= self.batch_size:                             break                     x_vec.append(token_vec)                 else:                     X_batch.append(x_vec)                     y_batch.append(self.topic2index[topic])                  if len(X_batch) >= self.batch_size:                     X_batch = pad_sequences(X_batch, maxlen=self.target_len)                     y_batch = to_categorical(y_batch, num_classes=len(self.topic2index))                     yield np.array(X_batch), np.array(y_batch)                     finished_batch = True

def models_builder(data_generator):     complexity = 768     inp = Input(shape=(data_generator.target_len, data_generator.embedding_size))     X = inp     X = Bidirectional(LSTM(complexity, return_sequences=True))(X)     X = Permute((2,1))(X)     X = MaxPooling1D(pool_size=600)(X)     X = Flatten()(X)     X = Dense(complexity)(X)     X = Activation('elu')(X)     X = Dense(complexity, name='embeding_output')(X)     X = Activation('sigmoid')(X)     X = Dense(len(data_generator.topic2index), activation='softmax')(X)      model = Model(inputs=inp, outputs=X)     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])     model.summary()      embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)     return model, embedder  data_generator = LabelsDataGenerator() model, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5 for i in tqdm(range(1000)):     if i%3==0:         previous_result = new_result         new_result = evaluate(get_similarity_values, 'эмбединг на LSTM + MaxPooling')         new_result = parse_result(new_result)         print(i, new_result)         if new_result < previous_result and i > 20:             break     for x, y in data_generator:         model.train_on_batch(x, y, class_weight=data_generator.class_weight)

0 87.0
3 152.1
6 110.5
9 146.7
12 166.2
15 79.8
18 47.2
21 84.0
24 144.8
27 83.8

6.3 Эмбединг на LSTM + Conv1D + AveragePooling

def models_builder(data_generator):     complexity = 600     inp = Input(shape=(data_generator.target_len, data_generator.embedding_size))     X_R = inp     X_R = Bidirectional(LSTM(complexity, return_sequences=True))(X_R)     X_R = Bidirectional(LSTM(complexity, return_sequences=True))(X_R)      X_C = inp     X_C = Conv1D(complexity, 3, strides=1, padding='same')(X_C)     X_C = Conv1D(complexity, 3, strides=1, padding='same')(X_C)      X = Concatenate()([X_R, X_C])     X = AveragePooling1D(pool_size=2)(X)      X = Conv1D(complexity, 3, strides=1, padding='same')(X)     X = AveragePooling1D(pool_size=2)(X)      X = Conv1D(complexity, 3, strides=1, padding='same')(X)     X = AveragePooling1D(pool_size=2)(X)     X = Flatten()(X)     X = Dense(complexity)(X)     X = Activation('sigmoid')(X)     X = Dense(complexity, name = 'embeding_output')(X)     X = Activation('elu')(X)     X = Dense(len(data_generator.topic2index), activation='softmax')(X)      model = Model(inputs=inp, outputs=X)     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])     model.summary()      embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)     return model, embedder  data_generator = LabelsDataGenerator() model, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

0 353.8
3 -147.8
6 7.6
9 5.5
12 -133.6
15 -133.6
18 9.0
21 9.0
24 -133.6

6.4 Эмбединг на LSTM + Inception + Attention

def models_builder(data_generator):     rate = 0.20     complexity = 500      def inception_convolutional_layer(X, complexity, rate=0.2, regularizer=0):         X_7 = Conv1D(int(complexity/7), kernel_size=7, strides=1, padding='same')(X)         X_6 = Conv1D(int(complexity/6), kernel_size=6, strides=1, padding='same')(X)         X_5 = Conv1D(int(complexity/5), kernel_size=5, strides=1, padding='same')(X)         X_4 = Conv1D(int(complexity/4), kernel_size=4, strides=1, padding='same')(X)         X_3 = Conv1D(int(complexity/3), kernel_size=3, strides=1, padding='same')(X)         X_2 = Conv1D(int(complexity/2), kernel_size=2, strides=1, padding='same')(X)         X_1 = Conv1D(int(complexity/1), kernel_size=1, strides=1, padding='same')(X)         X = Concatenate()([X_7, X_6, X_5, X_4, X_3, X_2, X_1])         X = Activation('elu')(X)         X = BatchNormalization()(X)         X = Dropout(rate)(X)         return X      def bi_LSTM(X, complexity, rate=0.2, regularizer=0):         X = Bidirectional(LSTM(int(complexity/2), return_sequences=True))(X)         X = BatchNormalization()(X)         X = Dropout(rate)(X)         return X      def dense_layer(X, complexity, activation='elu', rate=0.2, regularizer=0, name=None):         X = Dense(int(complexity), name=name)(X)         X = Activation(activation)(X)         X = BatchNormalization()(X)         X = Dropout(rate)(X)         return X      inp = Input(shape=(data_generator.target_len, data_generator.embedding_size))     X = inp     X = inception_convolutional_layer(X, complexity)     X = inception_convolutional_layer(X, complexity)     X = inception_convolutional_layer(X, complexity)     X = MaxPooling1D(pool_size=2)(X)     X = inception_convolutional_layer(X, complexity)     X = MaxPooling1D(pool_size=2)(X)     X = inception_convolutional_layer(X, complexity)     X = MaxPooling1D(pool_size=2)(X)      R = inp     R = bi_LSTM(R, complexity)     R = bi_LSTM(R, complexity/2)     attention_probs = Dense(int(complexity/2), activation='sigmoid', name='attention_probs')(R)     R = multiply([R, attention_probs], name='attention_mul')     R = Dropout(rate)(R)     R = MaxPooling1D(pool_size=2)(R)     R = inception_convolutional_layer(R, complexity)     R = MaxPooling1D(pool_size=2)(R)     R = inception_convolutional_layer(R, complexity)     R = MaxPooling1D(pool_size=2)(R)      X = Concatenate(axis=-1)([X, R])     X = Flatten()(X)     X = BatchNormalization()(X)     X = Dropout(rate)(X)      X = dense_layer(X, complexity)     X = dense_layer(X, complexity, activation='sigmoid')     X = dense_layer(X, complexity, name='embeding_output')      X = Dense(len(data_generator.topic2index), activation='softmax')(X)      model = Model(inputs=inp, outputs=X)     model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])     model.summary()      embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)     return model, embedder  data_generator = LabelsDataGenerator() model, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5 for i in tqdm(range(1000)):     if i%3==0:         previous_result = new_result         new_result = evaluate(get_similarity_values, 'эмбединг на LSTM + Inception + Attention')         new_result = parse_result(new_result)         print(i, new_result)         if new_result < previous_result and i > 20:             break     for x, y in data_generator:         model.train_on_batch(x, y, class_weight=data_generator.class_weight)

0 275.0
3 126.8
6 173.9
9 155.5
12 168.4
15 287.2
18 382.8
21 303.4

plot_results()

png

7 Triplet loss

Обучение будет происходит на том, что мы векторы из одного интента должны распологаться ближе друг к другу, а из разных интентов, дальше. Тем самым предложения, иемющие похожий смысл будут стоять ближ друг к другу, а разный, будут отстоять друг от друга.
Подробнее про Triplet loss вот тут

7.1 Triplet loss на BOW

class TripletDataGeneratorIndexes(BowDataGenerator):     def __init__(self, *args, **kwargs):         super().__init__(*args, **kwargs)         self.database = {}         for text, topic in self.texts_topics:             if topic not in self.database:                 self.database[topic] = []             self.database[topic].append(text)         # почистим все интенты с <5 сообщениями          sh_database = {}         for topic in self.database:             if len(self.database[topic]) > 5:                 sh_database[topic] = self.database[topic]         self.database = sh_database          self.all_topics = [topic for topic in self.database]      def __iter__(self):         for _ in tqdm(range(self.batches_per_epoch), leave=False):             anchor = []             positive = []             negative = []              for _ in range(self.batch_size):                 anchor_topic = random.choice(self.all_topics)                 anchor_index = np.random.randint(len(self.database[anchor_topic]))                 positive_index = np.random.randint(len(self.database[anchor_topic]))                 while positive_index == anchor_index:                     positive_index = np.random.randint(len(self.database[anchor_topic]))                  negative_topic = random.choice(self.all_topics)                 while negative_topic == anchor_topic:                     negative_topic = random.choice(self.all_topics)                  negative_index = np.random.randint(len(self.database[negative_topic]))                  anchor.append(self.database[anchor_topic][anchor_index])                 positive.append(self.database[anchor_topic][positive_index])                 negative.append(self.database[negative_topic][negative_index])              yield self.vectorize(anchor), self.vectorize(positive), self.vectorize(negative)

def models_builder(data_generator):     sentence_embeding_size = 100     def lossless_triplet_loss(y_true, y_pred, N=sentence_embeding_size, beta=100, epsilon=1e-8):         """         Implementation of the triplet loss function          Arguments:         y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.         y_pred -- python list containing three objects:                 anchor -- the encodings for the anchor data                 positive -- the encodings for the positive data (similar to anchor)                 negative -- the encodings for the negative data (different from anchor)         N  --  The number of dimension          beta -- The scaling factor, N is recommended         epsilon -- The Epsilon value to prevent ln(0)          Returns:         loss -- real number, value of the loss         """         anchor = tf.convert_to_tensor(y_pred[:,0:N])         positive = tf.convert_to_tensor(y_pred[:,N:N*2])          negative = tf.convert_to_tensor(y_pred[:,N*2:N*3])          # distance between the anchor and the positive         pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor,positive)),1)         # distance between the anchor and the negative         neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor,negative)),1)          #Non Linear Values           pos_dist = -tf.math.log(-tf.math.divide((pos_dist),beta)+1+epsilon)         neg_dist = -tf.math.log(-tf.math.divide((N-neg_dist),beta)+1+epsilon)          # compute loss         loss = neg_dist + pos_dist         return loss      def basic_sentence_vectorizer():         inp = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))         X = inp         X = Dense(complexity)(X)         X = Activation('elu')(X)         X = Dense(complexity)(X)         X = Activation('elu')(X)         X = Dense(complexity, name='embeding_output')(X)         X = Activation('elu')(X)         X = Dense(complexity)(X)         vectorizer = Model(inputs=inp, outputs=X)         return vectorizer      complexity = 300      inp_anchor = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))     inp_positive = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))     inp_negative = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))      embedder = basic_sentence_vectorizer()      anchor = embedder(inp_anchor)     positive = embedder(inp_positive)     negative = embedder(inp_negative)      output = Concatenate(axis=1)([anchor, positive, negative])      model = Model(inputs=[inp_anchor, inp_positive, inp_negative], outputs=output)     model.compile(optimizer='adagrad', loss=lossless_triplet_loss)     model.summary()     return model, embedder  data_generator = TripletDataGeneratorIndexes(batch_size=128, batches_per_epoch=10000) model, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, 1, 1)) new_result = -10e5 for i in tqdm(range(1000)):     if i%3==0:         previous_result = new_result         new_result = evaluate(get_similarity_values, 'triplet loss indexes')         new_result = parse_result(new_result)         print(i, new_result)         if new_result < previous_result and i > 20:             break     for a, p, n in data_generator:         model.train_on_batch([a, p, n], zeros)

0 724.1
3 -143.5
6 11.7
9 36.2
12 -123.5
15 150.1
18 -51.9
21 5.0
24 -43.5

7.2 Triplet loss на embedings

class TripletDataGeneratorEmbedings(TripletDataGeneratorIndexes):     def __init__(self, *args, **kwargs):         super().__init__()         self.target_len = kwargs['target_len']         self.embedding_size = len(vectorize('any_token'))         self.use_word2vec = True         self.use_fasttext = True         self.batches_per_epoch = kwargs['batches_per_epoch']      def vectorize(self, sentences):         return LabelsDataGenerator.vectorize(self, sentences)

def models_builder(data_generator):     sentence_embeding_size = 300     def lossless_triplet_loss(y_true, y_pred, N=sentence_embeding_size, beta=100, epsilon=1e-8):         """         Implementation of the triplet loss function          Arguments:         y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.         y_pred -- python list containing three objects:                 anchor -- the encodings for the anchor data                 positive -- the encodings for the positive data (similar to anchor)                 negative -- the encodings for the negative data (different from anchor)         N  --  The number of dimension         beta -- The scaling factor, N is recommended         epsilon -- The Epsilon value to prevent ln(0)          Returns:         loss -- real number, value of the loss         """         anchor = tf.convert_to_tensor(y_pred[:,0:N])         positive = tf.convert_to_tensor(y_pred[:,N:N*2])         negative = tf.convert_to_tensor(y_pred[:,N*2:N*3])          # distance between the anchor and the positive         pos_dist = tf.math.reduce_sum(tf.math.square(tf.math.subtract(anchor,positive)),1)         # distance between the anchor and the negative         neg_dist = tf.math.reduce_sum(tf.math.square(tf.math.subtract(anchor,negative)),1)          #Non Linear Values           pos_dist = -tf.math.log(-tf.math.divide((pos_dist),beta)+1+epsilon)         neg_dist = -tf.math.log(-tf.math.divide((N-neg_dist),beta)+1+epsilon)          # compute loss         loss = neg_dist + pos_dist          return loss      def inception_convolutional_layer(X, complexity, rate=0.2, regularizer=0):         X_7 = Conv1D(int(complexity/7), kernel_size=7, strides=1, padding='same')(X)         X_6 = Conv1D(int(complexity/6), kernel_size=6, strides=1, padding='same')(X)         X_5 = Conv1D(int(complexity/5), kernel_size=5, strides=1, padding='same')(X)         X_4 = Conv1D(int(complexity/4), kernel_size=4, strides=1, padding='same')(X)         X_3 = Conv1D(int(complexity/3), kernel_size=3, strides=1, padding='same')(X)         X_2 = Conv1D(int(complexity/2), kernel_size=2, strides=1, padding='same')(X)         X_1 = Conv1D(int(complexity/1), kernel_size=1, strides=1, padding='same')(X)         X = Concatenate()([X_7, X_6, X_5, X_4, X_3, X_2, X_1])         X = Activation('elu')(X)         X = BatchNormalization()(X)         X = Dropout(rate)(X)         return X      def bi_LSTM(X, complexity, rate=0.2, regularizer=0):         X = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(int(complexity/2), return_sequences=True))(X)         X = tf.keras.layers.BatchNormalization()(X)         X = tf.keras.layers.Dropout(rate)(X)         return X      def dense_layer(X, complexity, rate=0.2, regularizer=0):         X = tf.keras.layers.Dense(int(complexity))(X)         X = tf.keras.layers.Activation('elu')(X)         X = tf.keras.layers.BatchNormalization()(X)         X = tf.keras.layers.Dropout(rate)(X)         return X      def basic_sentence_vectorizer():         rate = 0.20         complexity = 300         inp = Input(shape = (data_generator.target_len, data_generator.embedding_size))          X = inp         X = inception_convolutional_layer(X, complexity)         X = inception_convolutional_layer(X, complexity)         X = inception_convolutional_layer(X, complexity)         X = tf.keras.layers.MaxPooling1D(pool_size=2)(X)         X = inception_convolutional_layer(X, complexity)         X = tf.keras.layers.MaxPooling1D(pool_size=2)(X)         X = inception_convolutional_layer(X, complexity)         X = tf.keras.layers.MaxPooling1D(pool_size=2)(X)          R = inp         R = bi_LSTM(R, complexity)         R = bi_LSTM(R, complexity/2)         attention_probs = tf.keras.layers.Dense(int(complexity/2), activation='sigmoid', name='attention_probs')(R)         R = multiply([R, attention_probs], name='attention_mul')         R = Dropout(rate)(R)         R = MaxPooling1D(pool_size=2)(R)         R = inception_convolutional_layer(R, complexity)         R = MaxPooling1D(pool_size=2)(R)         R = inception_convolutional_layer(R, complexity)         R = MaxPooling1D(pool_size=2)(R)          X = Concatenate(axis=-1)([X, R])         X = Flatten()(X)         X = BatchNormalization()(X)         X = Dropout(rate)(X)          X = dense_layer(X, complexity)         X = dense_layer(X, complexity)         X = dense_layer(X, complexity)          X = Dense(sentence_embeding_size, activation='sigmoid')(X)         vectorizer = Model(inputs=inp, outputs=X)         return vectorizer      inp_anchor = Input(shape = (data_generator.target_len, data_generator.embedding_size))     inp_positive = Input(shape = (data_generator.target_len, data_generator.embedding_size))     inp_negative = Input(shape = (data_generator.target_len, data_generator.embedding_size))      embedder = basic_sentence_vectorizer()      anchor = embedder(inp_anchor)     positive = embedder(inp_positive)     negative = embedder(inp_negative)      output = Concatenate(axis=1)([anchor, positive, negative])      model = Model(inputs=[inp_anchor, inp_positive, inp_negative], outputs=output)     model.compile(optimizer='adagrad', loss=lossless_triplet_loss)     model.summary()     return model, embedder  data_generator = TripletDataGeneratorEmbedings(target_len=20, batch_size=32, batches_per_epoch=10000) model, embedder = models_builder(data_generator) get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, 1, 1)) new_result = -10e5 for i in tqdm(range(1000)):     if i%3==0:         previous_result = new_result         new_result = evaluate(get_similarity_values, 'triplet loss embeding')         new_result = parse_result(new_result)         print(i, new_result)         if new_result < previous_result and i>20:             break     for a, p, n in data_generator:         model.train_on_batch([a, p, n], zeros)

0 283.9
3 334.2
6 218.1
9 219.6
12 262.8
15 282.4
18 289.7
21 274.9

plot_results()

png

Итоги

Можно было предсказать, что победителями будут модели ELMO т.к. они были созданы для векторизации предложений. Их можно смело использовать, когда вам нужно быстро извлечь фичи из текста.
Лично меня приятно удивил BOW и среднее по эмбедингам. Даже без учёта порядка слов, они смогли поставить предложения из одной темы рядом.
Был разочарован автоэнкодерами. Сразу после инициализации результат лучше, чем после обучения. Не могу сказать в чём проблема, скорее всего автоэнкодер не может сжать всё предложение правильно и начинает предсказывать нули. Если у вас будут идеи по улучшению, то жду в комментариях.
Мой личный фаворит Triplet loss на embedings тоже не дал выдающегося результата. Думаю, что он раскроет свой потенциал на моделях в 100 раз больше по размеру и с обучением в течении нескольких месяцев.
Два метода: BOW с леммами без стоп слов и среднее с весами tf-idf хоть и не дают выдающихся средних результатов, но для некоторых предложений дают очень и очень хороший результат. Поэтому, для этих методов, всё должно зависеть от данных.
Вероятно, что со временем будет и Часть 3, если наберу достаточное количество идей.

ссылка на оригинал статьи https://habr.com/ru/post/515084/


Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *