DARPA Challenge в песочнице

от автора

image

Когда-то давно, бум online-образования только начинался, я прошел курс на ai-class.com. Захотелось сделать простую игру, в которой бы нейронная сеть обучалась, наблюдая за действиями пользователя. Игру хотелось сделать в стиле flappy birds, обучение должно было происходить в реальном времени, чтобы в любой момент можно было передать управление нейронной сети. В итоге я сделал маленький симулятор управления машинкой, которая обучается ездить сама. Получилась интересная комбинация pygame, pytorch и multiprocessing. Если интересно, добро пожаловать под кат.

Идею с игрой упростил до задачи управлять машинкой, которая едет по сгенерированной дороге со случайными препятствиями. Реализация симулятора была моим первым опытом с pygame.
На скриншотах, справа от дороги показаны веса всех слоев нейронной сети; слева — необученная сеть, справа — уже содержит тайные знания и что-то умеет.

Принцип работы

После запуска сеть инициализируется случайными значениями. На каждом кадре запоминаются нормированные показания 24х лидаров и последняя команда пользователя (left, right, straight). Таким образом получаем задачу классификации с тремя классами. Когда набирается N примеров для обучения (в данном случае 500), они отправляются в task_queue, где их ожидает модель для обучения в параллельном процессе. После обучения, состояние модели отправляется в result_queue, где в основном процессе обновляются параметры модели, рисуются новые значения весов, и пользователь может переключиться в режим автопилота.

Стоит отметить проблемы при обучении на таких данных:

  • Чаще всего приходится ехать прямо, поэтому обучающая выборка сильно не сбалансирована, и после обучения такая модель будет иметь тенденцию проезжать сквозь повороты. Исправить это можно отсечением примеров преобладающего класса (down-sample the majority class)
  • Когда автопилот попадает в критические ситуации, модель не знает что с этим делать, т.к. этого не было в обучающих данных. В моей версии машинка просто врежется, но решением было бы «телепортировать» машинку в критическую ситуацию и показать, как из нее выруливать.

Модель и обучение

Я использовал следующую модель из 24х входных нейронов и трех скрытых слоев, на выходе — 3 нейрона, максимальное значение есть предсказанная команда. Код выглядит вот так:

class Model(nn.Module):     def __init__(self, in_features=24, hidden=[56, 48, 48], out_features=3):         super().__init__()         layer_sizes = [in_features] + hidden         layers = []          for i in range(len(layer_sizes) - 1):             layers.append(nn.Linear(layer_sizes[i], layer_sizes[i + 1]))             layers.append(nn.ReLU(inplace=True))          layers.append(nn.Linear(layer_sizes[-1], out_features))         self.layers = nn.Sequential(*layers)      def forward(self, x):         return self.layers(x) 

Обучение — метод обратного распространения ошибки, можно найти в статьях по pytorch:

criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.005)  epochs = 7000  for i in range(epochs):     y_pred = model.forward(X_train)     loss = criterion(y_pred, y_train)      if i % 100 == 1:         print(f'epoch: {i:2}  loss: {loss.item():10.8f}')      optimizer.zero_grad()     loss.backward()     optimizer.step() 

Ниже видео, как это работает:

Исходный код всего проекта находится здесь. Предлагаю читателям поэкспериментировать с архитектурой нейронной сети, и количеством лидаров, а так же обучить машинку своему стилю вождения.

Это была моя проба пера в pytorch. Для создания и отладки модели было достаточно знаний курса на Udemy.
Хотелось бы услышать мнение опытных коллег, как в существующей постановке задачи сделать так, чтобы модель обучилась совсем не врезаться в препятствия.

Спасибо за внимание!

P.S. Картинки предоставлены ilyar

ссылка на оригинал статьи https://habr.com/ru/post/526872/