
Во Flutter существует множество способов управления состоянием, но большинство из них строятся таким образом, что вся логика исполняется в главном изоляте вашего приложения. Исполнения сетевых запросов, работа с WebSocket, потенциально тяжелые синхронные операции (вроде локального поиска) все это, обычно, реализуют именно в главном изоляте. Мне попадался всего один пакет, предназначенный для вынесения этих операций во внешние изоляты, но недавно появился и другой (написанный мной). Предлагаю вам с ним ознакомиться.
В данной статье я буду оперировать двумя основными терминами — изолят и главный поток. Они отличаются, чтобы текст не был слишком тавтологичен, но по существу, главный поток — тоже изолят. Также тут вы найдете некоторые выражения, которые будут резать слух (или глаза) особенно чутким натурам, поэтому приношу заранее свои извинения — извините. Все сомнительные слова я буду помечать курсивом. Также, называя в дальнейшем операции синхронными — я буду иметь в виду то, что результат вы будете получать в той же функции, в которой вызвали сторонний метод. А асинхронными — такие функции, в которых на месте вы не получите результата, но получите его в другом.
Введение
Изоляты предназначены для исполнения кода в не основном потоке вашего приложения. Когда основной поток начинает исполнять сетевые запросы, производить вычисления или делать какие угодно операции, отличные от его главного предназначения — отрисовки интерфейса, рано или поздно вы столкнетесь с тем, что драгоценное время на отрисовку одного кадра начнет увеличиваться. В основном, время, доступное вам для выполнения любой операции в главном потоке ограничено ~16ms, это окно, существующее между отрисовкой 2х кадров при частоте 60FPS. Однако, в данный момент есть множество телефонов с большей частотой дисплея, и так, как у меня как раз такой — тем интереснее будет сравнить производительность приложения при одних и тех же действиях с использованием разных подходов. В таком случае, окно равно уже ~11.11ms, а частота обновления дисплея 90FPS.
Исходные данные
Представим, что вам необходимо загрузить большой объем данных, вы можете сделать это несколькими способами:
-
Просто осуществить запрос в главном потоке
-
Использовать функцию
computeдля осуществления запроса -
Явно использовать изолят для запроса
Эксперименты проводились на смартфоне OnePlus 7 Pro, с процессором Snapdragon 855, и принудительно заданной частотой экрана в 90Hz. Приложение запускалось командой flutter run --profile. Проводилась эмуляция получения данных с сервера (5 одновременных запросов 10 раз подряд).
В одном запросе возвращается JSON — массив из 2273 элементов, один из которых изображен на скриншоте. Размер ответа 1.12Mb. Таким образом, для 5 одновременных запросов получаем необходимость распарсить 5.6Mb JSON’а (но элементов в списке приложения будет 2273).

Давайте сравним все три способа по таким параметрам — время отрисовки кадра, время операции, сложность организации / написания кода.
Пример первый: Пачка запросов из главного потока
Есть следующий код:
Future<void> loadItemsOnMainThread() async { _startFpsMeter(); isLoading = true; notifyListeners(); List<Item> mainThreadItems; for (int i = 0; i < 10; i++) { bench.startTimer('Load items in main thread'); mainThreadItems = await makeManyRequests(5); final double diff = bench.endTimer('Load items in main thread'); requestDurations.add(diff); } items.clear(); items.addAll(mainThreadItems); isLoading = false; notifyListeners(); _stopFpsMeter(); requestDurations.clear(); }
Данный метод находится в реактивном стейте, исполняемом в главном изоляте приложения.
При выполнении кода выше получаем следующие значения:
-
Среднее время отрисовки одного кадра — 14,036ms / 71.25FPS
-
Медианное время кадра — 11.148ms / 89.70FPS
-
Максимальное время отрисовки одного кадра — 100,332ms / 9.97FPS
-
Среднее время для выполнения 5 одновременных запросов — 226.894ms
Пример второй: Compute
Future<void> loadItemsWithComputed() async { _startFpsMeter(); isLoading = true; notifyListeners(); List<Item> computedItems; /// Реализовывались два варианта исполнения /// каждая пачка из 5 одновременных запросов, запускаемых последовательно, /// запускалась в функции compute if (true) { for (int i = 0; i < 10; i++) { bench.startTimer('Load items in computed'); computedItems = await compute<dynamic, List<Item>>(_loadItemsWithComputed, null); final double diff = bench.endTimer('Load items in computed'); requestDurations.add(diff); } /// Второй вариант - все 10 запросов по 5 штук в одной функции compute } else { bench.startTimer('Load items in computed'); computedItems = await compute<dynamic, List<Item>>(_loadAllItemsWithComputed, null); final double diff = bench.endTimer('Load items in computed'); requestDurations.add(diff); } items.clear(); items.addAll(computedItems); isLoading = false; notifyListeners(); _stopFpsMeter(); requestDurations.clear(); } Future<List<Item>> _loadItemsWithComputed([dynamic _]) async { return makeManyRequests(5); } Future<List<Item>> _loadAllItemsWithComputed([dynamic _]) async { List<Item> items; for (int i = 0; i < 10; i++) { items = await makeManyRequests(5); } return items; }
В данном примере такие же запросы запускались в двух вариантах: каждые 5 одновременных запросов из 10 последовательных запускались каждый в своем compute:
-
Среднее время кадра — 11.254ms / 88.86FPS
-
Медианное время кадра — 11.152ms / 89.67FPS
-
Максимальное время кадра — 22.304ms / 44.84FPS
-
Среднее время для 5 одновременных запросов — 386.253ms
Второй вариант — все 10 последовательных запросов по 5 одновременных запускались в одном compute:
-
Среднее время кадра — 11.252ms / 88.87FPS
-
Медианное время кадра — 11.152ms / 89.67FPS
-
Максимальное время кадра — 22.306ms / 44.83FPS
-
Среднее время для 5 одновременных запросов (считалось, как выполнение всех 10 по 5 запросов в compute, деленное на 10) — 231.747ms
Пример третий: Isolate
Тут стоит сделать отступление: в терминологии пакета существует две части общего стейта (состояния):
-
Frontend-стейт — некий реактивный стейт, который отправляет сообщения в Backend, обрабатывает его ответы, а также хранит данные, после обновления которых обновляется и UI, а также он хранит легкие методы, которые вызываются из UI. Данный стейт работает в главном потоке приложения.
-
Backend-стейт — тяжелый стейт, получающий сообщения от фронта, выполняющий тяжелые операции, возвращающий ответы фронту и работающий в отдельном изоляте. Данный стейт также может хранить данные (тут, как вам захочется).
Код из третьего варианта разбит на несколько методов, по причине наличия необходимости общения с изолятом. Методы фронта показаны ниже:
/// Данный метод является точкой входа в операцию Future<void> loadItemsWithIsolate() async { /// Запускаем счетчик кадров перед всей операцией _startFpsMeter(); isLoading = true; notifyListeners(); /// Начинаем считать время запросов bench.startTimer('Load items in separate isolate'); /// Отправляем событие в "тяжеловесную" часть стейта, запускаемую на изоляте send(Events.startLoadingItems); } /// Обработчик события [Events.loadingItems] по обновлению времени запросов из изолята void _middleLoadingEvent() { final double time = bench.endTimer('Load items in separate isolate'); requestDurations.add(time); bench.startTimer('Load items in separate isolate'); } /// Обработчик завершающего события [Events.endLoadingItems] из изолята Future<void> _endLoadingEvents(List<Item> items) async { this.items.clear(); /// Обновляем данные в реактивном стейте this.items.addAll(items); /// Заканчиваем считать время запросов final double time = bench.endTimer('Load items in separate isolate'); requestDurations.add(time); isLoading = false; notifyListeners(); /// Останавливаем счетчик кадров _stopFpsMeter(); requestDurations.clear(); }
А тут вы можете увидеть метод бэка, с нужной нам логикой:
/// Обработчик события [Events.startLoadingItems] Future<void> _loadingItems() async { _items.clear(); for (int i = 0; i < 10; i++) { _items.addAll(await makeManyRequests(5)); if (i < (10 - 1)) { /// Для всех запросов, кроме последнего - отсылаем только одно событие send(Events.loadingItems); } else { /// Для последнего из 10ти запросов - отсылаем сообщение с данными send(Events.endLoadingItems, _items); } } }
Результаты:
-
Среднее время кадра — 11.151ms / 89.68FPS
-
Медианное время кадра — 11.151ms / 89.68FPS
-
Максимальное время кадра — 11.152ms / 89.67FPS
Промежуточные итоги
Проведя три эксперимента по загрузке в приложении одного и того же набора данных получаем такие показатели:
|
Main Thread |
Compute 1req in 1 |
Compute 10req in 1 |
Isolate |
|
|
Среднее время кадра |
14.036ms |
11.254ms |
11.252ms |
11.151ms |
|
Медианное время кадра |
11.148ms |
11.152ms |
11.152ms |
11.151ms |
|
Максимальное время кадра |
100.332ms |
22.304ms |
22.306ms |
11.152ms |
|
Среднее время пачки запросов |
226.894ms |
386.253ms |
231.747ms |
218.731ms |
|
Субъективная сложность кода (больше — сложнее) |
1 |
2 |
3 |
4 |
Судя по данным цифрам, можно сделать следующие выводы:
-
Flutter способен обеспечивать стабильные ~90FPS
-
Осуществление множества тяжелых сетевых запросов в главном потоке вашего приложения сказывается на его производительности — появляются лаги
-
Написание кода, исполняемого в главном потоке проще простого
-
Compute позволяет уменьшить заметность лагов
-
Написание кода с использованием Compute несет некоторые ограничения (чистые функции, нельзя передавать статические методы, нет замыкания и т.д.)
-
Overhead при использовании compute по времени операции ~150-160ms
-
Isolate позволяет полностью избавиться от лагов
-
Написание кода с использованием изолятов сложнее, и также несет некоторые ограничения, о которых позднее
Давайте проведем еще один эксперимент, чтобы узнать наверняка, какой из способов оптимален по всем исследуемым параметрам.
Эксперимент номер два: Локальный поиск
Представим, что теперь нам необходимо найти в загруженных данных определенные элементы по вводимому в инпут значению. Данный тест реализован следующим способом: имеется инпут, в который вводятся посимвольно 3 подстроки в 3 символа из числа подстрок, имеющихся в элементах списка. Количество элементов в массиве при поиске увеличено в 10 раз и составляет 22730 штук.
Поиск осуществлялся в 2х режимах — примитивное наличие введенной строки в элементе из списка, а также с использованием алгоритма схожести строк.
Также, асинхронные варианты поиска — compute / isolate не начинаются, пока не завершится предыдущий поиск. Т.е. схема такая — введя первый символ в инпут, начинаем поиск, пока он не завершится — данные не вернутся в основной поток и не перерисуется UI, второй символ в инпут не вводится. Когда все действия завершены, вводится второй символ и также наоборот. Это аналогично алгоритму, когда мы «копим» введенные пользователем символы, а затем отправляем всего один запрос, вместо отправки запроса на абсолютно каждый введенный символ, вне зависимости от того, с какой скоростью они вводились.
Замеры времени отрисовки производились только во время ввода символов в поиск, т.е. операции подготовки данных и что-то другое, не влияли на собранные данные.
Для начала, вспомогательные функции, функция поиска и другой общий код:
/// Функция для создания копии элементов /// используемых как исходные при фильтрации void cacheItems() { _notFilteredItems.clear(); final List<Item> multipliedItems = []; for (int i = 0; i < 10; i++) { multipliedItems.addAll(items); } _notFilteredItems.addAll(multipliedItems); }
/// Функция, запускающая тестовый сценарий /// по вводу символов в текстовый инпут Future<void> _testSearch() async { List<String> words = items.map((Item item) => item.profile.replaceAll('https://opencollective.com/', '')).toSet().toList(); words = words .map((String word) { final String newWord = word.substring(0, min(word.length, 3)); return newWord; }) .toSet() .take(3) .toList(); /// Стартуем счетчик кадров _startFpsMeter(); for (String word in words) { final List<String> letters = word.split(''); String search = ''; for (String letter in letters) { search += letter; await _setWord(search); } while (search.isNotEmpty) { search = search.substring(0, search.length - 1); await _setWord(search); } } /// Останавливаем счетчик _stopFpsMeter(); }
/// Вводим символы с задержкой /// в 800мс, но если данные из асинхронного /// фильтра (computed / isolate) еще не пришли, /// то ждем их Future<void> _setWord(String word) async { if (!canPlaceNextLetter) { await wait(800); await _setWord(word); } else { searchController.value = TextEditingValue(text: word); await wait(800); } }
/// В зависимости от установленного флага [USE_SIMILARITY] /// используется или нет поиск со схожестью строк List<Item> filterItems(Packet2<List<Item>, String> itemsAndInputValue) { return itemsAndInputValue.value.where((Item item) { return item.profile.contains(itemsAndInputValue.value2) || (USE_SIMILARITY && isStringsSimilar(item.profile, itemsAndInputValue.value2)); }).toList(); } bool isStringsSimilar(String first, String second) { return max(StringSimilarity.compareTwoStrings(first, second), StringSimilarity.compareTwoStrings(second, first)) >= 0.3); }
Поиск в главном потоке
Future<void> runSearchOnMainThread() async { cacheItems(); isLoading = true; notifyListeners(); searchController.addListener(_searchOnMainThread); await _testSearch(); searchController.removeListener(_searchOnMainThread); isLoading = false; notifyListeners(); } void _searchOnMainThread() { final String searchValue = searchController.text; if (searchValue.isEmpty && items.length != _notFilteredItems.length) { items.clear(); items.addAll(_notFilteredItems); notifyListeners(); return; } items.clear(); /// Packet2 - обертка для двух значений items.addAll(filterItems(Packet2(_notFilteredItems, searchValue))); notifyListeners(); }
Простой поиск:
-
Среднее время кадра — 21.588ms / 46.32FPS
-
Медианное время кадра — 11.154ms / 89.65FPS
-
Максимальное время кадра — 668,986ms / 1.50FPS
Поиск со схожестью:
-
Среднее время кадра — 43,123ms / 23.19FPS
-
Медианное время кадра — 11,152ms / 89.67FPS
-
Максимальное время кадра — 2 440,910ms / 0.41FPS
Поиск через Compute
Future<void> runSearchWithCompute() async { cacheItems(); isLoading = true; notifyListeners(); searchController.addListener(_searchWithCompute); await _testSearch(); searchController.removeListener(_searchWithCompute); isLoading = false; notifyListeners(); } Future<void> _searchWithCompute() async { canPlaceNextLetter = false; /// Перед началом фильтрации /// устанавливаем флаг, который будет сигнализировать /// о том, что происходит асинхронная фильтрация isSearching = true; notifyListeners(); final String searchValue = searchController.text; if (searchValue.isEmpty && items.length != _notFilteredItems.length) { items.clear(); items.addAll(_notFilteredItems); isSearching = false; notifyListeners(); await wait(800); canPlaceNextLetter = true; return; } final List<Item> filteredItems = await compute(filterItems, Packet2(_notFilteredItems, searchValue)); /// После окончания фильтрации убираем сигнал isSearching = false; notifyListeners(); await wait(800); items.clear(); items.addAll(filteredItems); notifyListeners(); canPlaceNextLetter = true; }
Простой поиск:
-
Среднее время кадра — 12,682ms / 78.85FPS
-
Медианное время кадра — 11,154ms / 89.65FPS
-
Максимальное время кадра — 111,544ms / 8.97FPS
Поиск со схожестью:
-
Среднее время кадра — 12,515ms / 79.90FPS
-
Медианное время кадра — 11,153ms / 89.66FPS
-
Максимальное время кадра — 111,527ms / 8.97FPS
Поиск с помощью Isolate
Немного кода:
/// Запускаем операцию в изоляте Future<void> runSearchInIsolate() async { send(Events.cacheItems); } void _middleLoadingEvent() { final double time = bench.endTimer('Load items in separate isolate'); requestDurations.add(time); bench.startTimer('Load items in separate isolate'); } /// Этот метод запускается на событие [Events.cacheItems], /// отправленное из изолята Future<void> _startSearchOnIsolate() async { isLoading = true; notifyListeners(); searchController.addListener(_searchInIsolate); await _testSearch(); searchController.removeListener(_searchInIsolate); isLoading = false; notifyListeners(); } /// На каждое изменение инпута отсылается сообщение в изолят void _searchInIsolate() { canPlaceNextLetter = false; isSearching = true; notifyListeners(); send(Events.startSearch, searchController.text); } /// Запись в реактивный стейт данных из изолята Future<void> _setFilteredItems(List<Item> filteredItems) async { isSearching = false; notifyListeners(); await wait(800); items.clear(); items.addAll(filteredItems); notifyListeners(); canPlaceNextLetter = true; } Future<void> _endLoadingEvents(List<Item> items) async { this.items.clear(); this.items.addAll(items); final double time = bench.endTimer('Load items in separate isolate'); requestDurations.add(time); await wait(800); isLoading = false; notifyListeners(); _stopFpsMeter(); print('Load items in isolate ->' + requestDurations.join(' ').replaceAll('.', ',')); requestDurations.clear(); }
А это методы, находящиеся в бэкенде, который работает в стороннем изоляте:
/// Обработчик события [Events.cacheItems] void _cacheItems() { _notFilteredItems.clear(); final List<Item> multipliedItems = []; for (int i = 0; i < 10; i++) { multipliedItems.addAll(_items); } _notFilteredItems.addAll(multipliedItems); send(Events.cacheItems); } /// На каждое событие [Events.startSearch] вызывается данный метод /// фильтрующий элементы и отсылающий отфильтрованное в легкий стейт void _filterItems(String searchValue) { if (searchValue.isEmpty) { _items.clear(); _items.addAll(_notFilteredItems); send(ThirdEvents.setFilteredItems, _items); return; } final List<Item> filteredItems = filterItems(Packet2(_notFilteredItems, searchValue)); _items.clear(); _items.addAll(filteredItems); send(Events.setFilteredItems, _items); }
Простой поиск:
-
Среднее время кадра — 11,354ms / 88.08FPS
-
Медианное время кадра — 11,153ms / 89.66FPS
-
Максимальное время кадра — 33,455ms / 29.89FPS
Поиск со схожестью:
-
Среднее время кадра — 11,353ms / 88.08FPS
-
Медианное время кадра — 11,153ms / 89.66FPS
-
Максимальное время кадра — 33,459ms / 29.89FPS
Еще одни выводы
|
Main Thread |
Compute |
Isolate |
|
|
Среднее время кадра |
21.588ms |
12.682ms |
11.354ms |
|
Максимальное время кадра |
668.986ms |
111.544ms |
33.455ms |
|
Среднее время кадра (схожесть) |
43.123ms |
12.515ms |
11.353ms |
|
Максимальное время кадра (схожесть) |
2 440.910ms |
111.527ms |
33.459ms |
|
Субъективная сложность кода (больше — сложнее) |
1 |
2 |
3 |
Из этой таблички и предыдущего исследования следует, что:
-
Главный поток не следует использовать для операций > 16ms (чтобы обеспечить, хотя бы, 60FPS)
-
Compute технически подходит для частых и тяжелых операций, но накладывает overhead в те же 150ms, а также имеет более нестабильную производительность, по сравнению с постоянным изолятом (вероятно, это связано с тем, что каждый раз открывается, и, после завершения операции — закрывается изолят, что также требует ресурсов)
-
Isolate — самый сложный в написании кода способ достижения максимальной производительности приложения на Flutter
Что же, кажется, что изоляты — это идеальный способ достижения результата, и даже Google советует использовать именно их для всех тяжелых операций (это для красного словца, пруфов я не нашел ?). Но нужно писать много кода. На самом деле, все что написано выше — это результат, достигнутый с использованием представленной в самом начале библиотеки, без нее — придется написать намного, намнооого больше. К тому же, данный алгоритм поиска можно оптимизировать — после фильтрации всех элементов отправлять фронту только маленькую порцию данных — это отнимет меньше ресурсов, а уже после ее передачи отправлять все остальное.
Также я проводил эксперименты по пропускной способности канала связи между изолятами. Для ее оценки использовалась таких сущностей:
class Item { const Item( this.id, this.createdAt, this.profile, this.imageUrl, ); final int id; final DateTime createdAt; final String profile; final String imageUrl; }
И получилось следующее — при одновременной передаче 5000 элементов, время, которое уходит на копирование данных, не влияет на UI, т.е. частота отрисовки не уменьшается. Было передано 1 000 000 таких элементов пачками по 5 000 штук за раз с принудительной паузой между передачей пачек в 8ms, через Future<void>.delayed , при этом частота кадров не опускалась ниже 80FPS. К сожалению, делал я этот эксперимент задолго до написания данной статьи и сухих цифр нет (если будет запрос — то появятся).
Многим может показаться сложным или не нужным разбираться с изолятами, и люди останавливаются на compute . Тут на помощь может прийти еще одна функциональность данного пакета, которая приравнивает API к простоте compute, а возможностей в итоге дает намного больше.
Вот пример:
/// Frontend part Future<void> decrement([int diff = 1]) async { counter = await runBackendMethod<int, int>(Events.decrement, diff); } /// ----- /// Backend part Future<int> _decrement(int diff) async { counter -= diff; return counter; }
Благодаря данному подходу можно просто вызвать функцию бэкенда по ID, которому эта функция соответствуют. Соответствие ID — метод задается в предопределенных геттерах:
/// Frontend part /// Данный блок отвечает за обработку событий из изолята @override Map<Events, Function> get tasks => { Events.increment: _setCounter, Events.decrement: _setCounter, Events.error: _setCounter, }; /// ----- /// Backend part /// А данный - за обработку событий из главного потока @override Map<Events, Function> get operations => { Events.increment: _increment, Events.decrement: _decrement, };
Таким образом мы получаем два способа взаимодействия:
1 Асинхронное общение через явную передачу сообщений
1.1 Frontend-стейт (тот, что крутится в главном потоке, замиксованный с BackendMixin<EventType> ) отправляет событие в Backend-стейт используя метод send, передавая в сообщении ID события и необязательный аргумент.
enum Events { increment, } class FirstState with BackendMixin<Events> { int counter = 0; void increment([int diff = 1]) { send(Events.increment, diff); } void _setCounter(int value) { counter = value; notifyListeners(); } @override Map<Events, Function> get tasks => { Events.increment: _setCounter, }; }
1.2 Это сообщение передается в бэкенд и обрабатывается там
class FirstBackend extends Backend<Events> { FirstBackend(SendPort toFrontend) : super(toFrontend); int counter = 0; void _increment(int diff) { counter += diff; send(Events.increment, counter); } @override Map<Events, Function> get operations => { Events.increment: _increment, }; }
1.3 Backend-стейт возвращает результат в реактивный стейт главного потока и готово! Есть два способа вернуть результат — возврат ответа методом бэкенда (return) (тогда ответ будет отправлен с тем же ID сообщения, что и был получен), а второй — явно вызвать метод send. При этом можно отправлять в реактивный стейт какие угодно сообщения с любыми, заданными вами ID. Главное — чтобы этим ID были заданы методы-обработчики.
Схематично, первый способ выглядит так:

Желтая двусторонняя стрелка — взаимодействие с какими-либо сервисами из вне, например — неким сервером. А фиолетовая, идущая от сервера к бэку — это входящие сообщения от того же сервера, например — WebSocket.
2 Синхронное общение через вызов функции бэкенда по ее ID
2.1 Frontend использует метод runBackendMethod , указывая ID, чтобы вызвать метод бэка, ему соответствующий, получая ответ тут же. В таком способе не обязательно даже указывать что-либо в списке задач (tasks) вашего фронта. При этом, как показано в коде ниже, вы можете переопределить метод onBackendResponse в вашем фронте, который вызывается после каждого получения вашим фронт-стейтом сообщений от бэка.
enum Events { decrement, } class FirstState with ChangeNotifier, BackendMixin<Events> { int counter = 0; Future<void> decrement([int diff = 1]) async { counter = await runBackendMethod<int, int>(Events.decrement, diff); } /// Automatically notification after any event from backend @override void onBackendResponse() { notifyListeners(); } }
2.2 Backend-метод обрабатывает пришедшее событие, и просто возвращает результат. В данном случае есть одно ограничение — методы бэка, вызываемые «синхронно», не должны вызывать метод send, с тем же ID, которому они соответствуют. В данном примере метод _decrement не должен вызывать метод send(Events.decrement). При этом любые другие сообщения он отправлять может.
class FirstBackend extends Backend<Events> { FirstBackend(SendPort toFrontend) : super(toFrontend); int counter = 0; /// Or, you can simply return a value Future<int> _decrement(int diff) async { counter -= diff; return counter; } @override Map<Events, Function> get operations => { Events.decrement: _decrement, }; }
Схема второго способа похожа на первый, за тем исключением, что во фронте вам не нужно писать обработчики событий, прилетающих с бэка.

Что бы еще добавить…
Чтобы использовать такую связку — необходимо эти бэкенды создавать. Для этого в BackendMixin<EventType> заложен механизм создания бэка — метод initBackend. В данный метод необходимо передать функцию-фабрику по созданию бэкенда. Это должна быть чистая функция высшего уровня (top-level, как гласит документация Flutter), либо статический метод класса. Время создания одного изолята ~200ms.
enum Events { increment, decrement, } class FirstState with ChangeNotifier, BackendMixin<Events> { int counter = 0; void increment([int diff = 1]) { send(Events.increment, diff); } Future<void> decrement([int diff = 1]) async { counter = await runBackendMethod<int, int>(Events.decrement, diff); } void _setCounter(int value) { counter = value; } Future<void> initState() async { await initBackend(createFirstBackend); } /// Automatically notification after any event from backend @override void onBackendResponse() { notifyListeners(); } @override Map<Events, Function> get tasks => { Events.increment: _setCounter, }; }
Пример функции-создателя Backend-части:
typedef Creator<TDataType> = void Function(BackendArgument<TDataType> argument); void createFirstBackend(BackendArgument<void> argument) { FirstBackend(argument.toFrontend); } @protected Future<void> initBackend<TDataType extends Object>(Creator<TDataType> creator, {TDataType data, ErrorHandler errorHandler}) async { /// ... }
Ограничения
-
Все тоже самое, что есть у обычного изолята
-
Для каждого создающегося «бэкенда» в данный момент создается свой изолят и при слишком большом количестве бэкендов — время их создания становится ощутимым, особенно, если инициализировать все их, скажем, при загрузке приложения. Я проводил эксперименты, запуская одновременно 30 бэкендов — время загрузки на указанном выше телефоне в
--releaseрежиме заняло 6 с небольшим секунд. -
Есть некоторые сложности с обработкой ошибок, возникающих в изолятах (бэкендах). Тут, если вас заинтересует данный пакет, следует подробнее ознакомиться с методом
initBackendизBackendMixin. -
Сложность написания кода выше, по сравнению с хранением логики только в главном потоке
Чек-лист для использования
Тут все просто, вам не нужно использовать изоляты (как отдельно, так и с помощью данного пакета), если:
-
Производительность вашего приложения не падает при различных операциях
-
Для узких мест вам достаточно
compute -
Вам не хочется разбираться с изолятами
-
Цикл жизни вашего приложения настолько короткий, что нет смысла его оптимизировать
В противном случае — вы можете обратить свое внимание на данный подход и пакет, который упростит вашу работу с изолятами.
Видео всех экспериментов
ссылка на оригинал статьи https://habr.com/ru/post/532862/
Добавить комментарий