Применение POWERPASTE для автономных источников питания

от автора

POWERPASTE — это вещество для хранения водорода сверхвысокой емкости для топливных элементов с PEM, изобретенное и разработанное Fraunhofer IFAM. POWERPASTE выделяет водород при контакте с водой. Емкость по водороду составляет около 10 мас.% (Т.е. 10 кг POWERPASTE → 1 кг водорода). Это удельная энергия 1,6 кВтч/кг и плотность энергии 1,9 кВтч/литр, что примерно в 10 раз превышает емкость литий-ионных батарей. Отмеченная наградами технология POWERPASTE запатентована (ЕС, США) и имеет множество преимуществ по сравнению с другими технологиями хранения энергии, в частности, в диапазоне мощности от 100 Вт до 10 кВт.

Рис.1: POWERPASTE; Картридж POWERPASTE; демонстрационный источник питания 100 Вт.
Рис.1: POWERPASTE; Картридж POWERPASTE; демонстрационный источник питания 100 Вт.

Схематическое изображение принципа работы источника электропитания на основе POWERPASTE показано на следующей схеме:

Рис. 2: Схематическое изображение источника эл.энергии на базе POWERPASTE.
Рис. 2: Схематическое изображение источника эл.энергии на базе POWERPASTE.

В отличие от батарей, системы питания на основе POWERPASTE не зависят от электросети и могут быть перезаряжены за секунды заменой картриджа. Кроме того, POWERPASTE отличается высокой стабильностью и не подвержен саморазряду. Капитальные затраты на ед. мощности и совокупная стоимость владения для энергосистем на базе POWERPASTE сопоставимы, в частности, в диапазоне мощности от 100 Вт до 10 кВт, например, для БПЛА с длительным временем полета или автомобилей с увеличенным запасом хода, а также для различных стационарных применений, таких как резервные генераторы энергии.

Основным компонентом POWERPASTE является гидрид магния, MgH2, в котором водород хранится в безопасной форме. Получение водорода из POWERPASTE можно представить следующей схемой:

Рис. 3: Схема реакции для получения водорода.
Рис. 3: Схема реакции для получения водорода.

Сравнение POWERPASTE с другими перспективными технологиями

Энергетические системы на основе топливных элементов стали многообещающей альтернативой батареям, но пока они были экономически успешными только на нишевых рынках. Это в основном связано с отсутствием инфраструктуры. Большинству топливных элементов нужен водород в той или иной форме, который затем может вступать в реакцию внутри топливного элемента с кислородом (или окружающим воздухом) для выработки электроэнергии. Общий принцип работы топливного элемента изображен на следующем рисунке:

Рис. 4: Общий принцип работы топливного элемента.
Рис. 4: Общий принцип работы топливного элемента.

Существует четыре основных подхода к обеспечению водородом для энергетических систем на основе топливных элементов:

  1. Подача газообразного водорода непосредственно в топливный элемент. Здесь водород хранится в специальных газовых баллонах (сделанных из высокопрочных материалов, таких как композит из углеродного волокна) под давлением в несколько сотен бар. Уменьшение размера резервуаров для хранения водорода высокого давления ограничено из-за обязательных компонентов безопасности. Кроме того, необходима сеть водородных заправок.

  2. Выработка водорода в установке риформинга. При высокой температуре установка риформинга превращает обычное топливо (углеводороды, такие как дизельное топливо, СПГ или метанол) в водород и диоксид углерода (CO2).

  3. Выработка водорода из специального топлива прямо в топливном элементе. На сегодняшний день это возможно только с метанолом в так называемых топливных элементах с прямым метанолом (DMFC), которые тоже выделяют CO2. Требуется специальная водно-метанольная смесь.

  4. Генерировать водород при давлении, близком к окружающему, посредством химической реакции вещества-носителя водорода с водой, так называемой реакции гидролиза, при которой не выделяется CO2. Водородный носитель может поставляться в картриджах. POWERPASTE является примером такого носителя.

Сравнительный обзор наиболее актуальных технологий накопления энергии и энергоснабжения в диапазоне мощностей от 100 Вт до 10 кВт приведен в таблице:

Таблица 1: Ключевые показатели эффективности автономных источников энергии
Таблица 1: Ключевые показатели эффективности автономных источников энергии

Стоит рассмотреть два наиболее важных свойства более подробно — удельную энергию и плотность энергии. На следующей диаграмме представлен обзор ряда высокоэнергетических видов топлива, в которых сравниваются эти свойства, для выработки электроэнергии в реальных условиях (в реальных системах, включая все потери преобразования):

Рис. 5: Удельная энергия (Вт/кг) и плотность энергии (Вт/л) некоторых видов высокоэнергетического топлива.
Рис. 5: Удельная энергия (Вт/кг) и плотность энергии (Вт/л) некоторых видов высокоэнергетического топлива.

POWERPASTE для автономных источников питания

Предпринималось много попыток эффективно вырабатывать водород для топливных элементов с помощью химической реакции, поскольку это позволяет избежать необходимости использования высоких давлений и специальной инфраструктуры (водородные заправочные станции). Химические носители водорода (твердые или жидкие) можно легко транспортировать и заправлять. В течение некоторого времени в качестве возможного решения предлагались реакции боргидрида натрия (NaBH4) или других восстановителей с водой (так называемые реакции гидролиза). Хотя боргидрид натрия перспективен с химической точки зрения, его токсичность и рыночная оптовая цена более 15 евро/кг ограничивают его использование.

С другой стороны, было много попыток сделать возможным применение потенциально более дешевого и нетоксичного гидрида магния для эффективной и контролируемой реакции с водой. Примечательной особенностью реакции гидролиза гидрида магния является то, что половина произведенного водорода вырабатывается из воды:

MgH2 + 2 H2O → 2 H2 + Mg(OH)2

Тем не менее, предыдущие попытки получить водород в результате реакции гидрида магния и воды c контролем реакции до такой степени, что становится возможным мгновенный запуск/остановка и полное отслеживание нагрузки топливного элемента, были безуспешными. Одна из причин — образование пассивирующих слоев на гидриде магния при контакте с водой. Однако, как продемонстрировал Fraunhofer IFAM, добавление некоторых солей металлов к гидриду магния может эффективно уменьшить образование этих пассивирующих слоев.

Другая причина заключается в том, что, в отличие от NaBH4, гидрид магния не может образовывать метастабильные водные растворы, что затрудняет строго контролируемую реакцию. Только благодаря изобретению полутвердой композиции POWERPASTE, которая содержит гидрид магния и вышеупомянутые соли металлов, а также нетоксичный эфир, Fraunhofer IFAM смог создать топливо со следующей уникальной комбинацией свойств:

  • Очень высокая плотность энергии до 1,9 кВтч / литр

  • Высокодинамичная реакция с водой для мгновенного запуска/остановки топливного элемента

  • Возможно дозирование независимо от ориентации (наклон до +/- 90 ° во всех направлениях)

  • Нетоксичный и безопасный состав

  • Легкая утилизация или переработка

  • Длительный срок хранения (до 5 лет)

  • Низкие производственные затраты (примерно до 2 евро/кг POWERPASTE)

Рис. 6: Динамика реакции чистого гидрида магния, гидрида магния + добавка соли металла и POWERPASTE
Рис. 6: Динамика реакции чистого гидрида магния, гидрида магния + добавка соли металла и POWERPASTE

Для производства водорода с помощью POWERPASTE не требуется специальной подготовки воды. Реакция протекает с водой различного качества (в частности, различной жесткости) и возможна даже с морской водой.

Коммерческое использование энергосистем на базе POWERPASTE

Основными компонентами системы электропитания POWERPASTE являются: картридж POWERPASTE, резервуар или резервуар для воды, водородный генератор, топливный элемент PEM, исполнительные механизмы, электроника и буферная / резервная батарея. Общий вид такого источника энергии можно увидеть на следующей схеме:

Рис. 7: Общая схема источника энергии на основе POWERPASTE
Рис. 7: Общая схема источника энергии на основе POWERPASTE

Путем дозирования точных количеств POWERPASTE и воды, реакция в водородном генераторе контролируется таким образом, что количество производимого водорода точно совпадает с потреблением водорода топливным элементом, обеспечивая низкое давление в системе и, следовательно, уменьшает ее вес. Заправка означает просто замену картриджей, что делает ее чрезвычайно быстрой.

ссылка на оригинал статьи https://habr.com/ru/post/543702/


Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *