UTF-8 vs UTF-16. Несколько советов программистам

от автора

Введение

С появлением первых устройств цифровой передачи информации и электронно-вычислительных машин возникла задача кодирования текстовых символов с помощью последовательностей единиц и нулей. Минимальная единица представления информации – байт. Исходя их этого в 1963 году в США разработана, стандартизована, а впоследствии расширена кодовая таблица ASCII (American standard code for information interchange), использовавшая 8 битную кодировку. В первую очередь с помощью этой таблицы предполагалось кодирование цифр и букв английского языка. Первые 128 символов таблицы представлены на рис.1:

Рис.1. Первые 128 символов таблицы ASCII.
Рис.1. Первые 128 символов таблицы ASCII.

Номер ячейки в таблице (рис.1) является кодом символа. В качестве примера рассмотрим кодирование слова Hello. Номера ячеек таблицы ASCII, в которых размещены буквы: 72 (H), 101 (e), 108 (l), 111 (o). Код слова в бинарном представлении выглядит следующим образом:

00010010 (H) 10100110 (e) 00110110 (l) 00110110 (l) 11110110 (o) (старший бит справа).

Выделенные подчеркиванием и жирным коды в двоичном представлении соответствуют номерам ячеек в таблице (рис.1). Алгоритм формирования кода следующий:

1. Выделены жирным – биты управления кодированием (префикс). 010 – кодируется заглавная буква алфавита, 011 – строчная.

2. Выделены подчеркиванием – порядковые номера букв в английском алфавите.

Таким образом, с помощью первых 128 ячеек таблицы ASCII могли быть закодированы основные символы, цифры и буквы английского языка. Остальные 128 ячеек (8 битная кодировка позволяет закодировать 256 символов) могли использоваться для кодирования других языков. Однако, учитывая разнообразие символов и языков, 8 бит недостаточно.

Стандарт Юникод

Консорциум Unicode (Юникод) – некоммерческая организация, главной задачей которой являлась разработка стандарта кодирования (стандарт Юникод) с поддержкой наибольшего числа языков и символов служебного характера. Принцип кодирования на основе таблицы сохранился, а таблица (таблица Юникод) была значительно расширена.

Стандарт Юникод предоставляет пользователям таблицу Юникод и способы кодирования символов.

Символы таблицы Юникод являются элементами «универсального набора символов» UCS (Universal Coded Character Set), определенного международным стандартом ISO/IEC 10646. Таблица Юникод каждому символу UCS сопоставляет кодовую точку, которая является номером ячейки таблицы, содержащей символ.

Способы кодирования символов таблицы Юникод, т.е. преобразования номеров ячеек таблицы Юникод в бинарные коды, составляют кодовое пространство, состоящее из трех кодов семейства UTF (Unicode Transformation Format): UTF-8, UTF-16 и UTF-32

UTF-8 – стандарт кодирования, преобразующий номера ячеек таблицы Юникод в бинарные коды с использованием переменного количества бит: 8, 16, 24 или 32.

UTF-16 – стандарт кодирования, преобразующий номера ячеек таблицы Юникод в бинарные коды с использованием переменного количества бит:16 или 32.

Коды UTF-8 и UTF-16 используют разные алгоритмы кодирования набора символов UCS.

Стандарт кодирования UTF-8

Стандарт закреплен в RFC (Request For Comments) 3629. Алгоритм кодирования согласно RFC:

0xxxxxxx

110xxxxx 10xxxxxx

1110xxxx 10xxxxxx 10xxxxxx

11110xx 10xxxxxx 10xxxxxx 10xxxxxx

Старший бит слева. Началом кода является управляющий символ (выделен жирным):

0 – используется 8-битная кодировка,

110 – используется 16-битная кодировка,

1110 – используется 24-битная кодировка,

11110 – используется 32 битная кодировка.

В начале каждого последующего байта – биты 10 – управляющий символ (выделен подчеркиванием), означающий продолжение кодирования.

Первые 128 ячеек таблицы Юникод повторяют таблицу ASCII. Для кодирования заглавных и строчных букв русского алфавита используются ячейки с номерами 1040-1103.

Рассмотрим пример кодирования фразы «Папа Hello».

Код в бинарном виде (старший бит справа):

00001011 11111001 (П) 00001011 00001101 (а) 00001011 11111101 (п) 00001011 00001101 (а) 00000100 (пробел) 00010010 (H) 10100110 (e) 00110110 (l) 00110110 (l) 11110110 (o).

Букве П русского алфавита согласно таблицы Юникод соответствует номер 1055, в бинарном представлении 10000011111 – 11 бит. Соответственно данный символ может быть закодирован двумя байтами с использованием префикса 110 – для первого байта и 10 – для второго байта. Английские буквы слова Hello кодируются 1 байтом, а коды совпадают с кодами в таблице ASCII.

Основными преимуществами способа кодирования UTF-8 являются многообразие символов, которые могут быть закодированы, а также возможность кодирования переменным количеством бит, что позволяет сэкономить количество информации, передаваемое в канале связи.

Стандарт кодирования UTF-16

В феврале 2000 года опубликован документ RFC 2781, в котором закреплен стандарт UTF-16, позволяющий кодировать символы таблицы Юникод с помощью 16 или 32 битных значений. Символы с номерами 0-55295 и 57344-65535 кодируются с помощью 16 бит без изменений (без использования префиксов), а остальные символы, номера которых в двоичном представлении формируются количеством бит больше 16, кодируются 32 битами с использованием специального алгоритма. Рассмотрим пример кодирования фразы «Папа Hello».

Код в бинарном виде (старший бит справа):

11111000 00100000 (П) 00001100 001000000 (а) 11111100 00100000 (п) 00001100 001000000 (а) 00000100 00000000 (пробел) 00010010 00000000 (H) 10100110 00000000 (e) 00110110 00000000 (l) 00110110 00000000 (l) 111110110 00000000 (o).

Номера букв русского и английского алфавитов таблицы Юникод передаются без изменений при помощи 16 бит, старшие незначащие биты принимают нулевое значение.

Рассмотрим подробнее алгоритм кодирования символов, номера которых превышают значение 65535. Для примера в качестве символа используем букву древнетюркского алфавита, представленную на рис.2:

Рис.2. Буква древнетюркского алфавита.
Рис.2. Буква древнетюркского алфавита.

Номер предложенного символа в таблице Юникод – 68620 (0х10COC).

Алгоритм преобразования номера символа в код UTF-16 состоит из нескольких шагов:

  1. Из значения номера символа вычесть число 0х10000. Данная операция позволяет привести размерность бинарного представления номера символа к 20 битам. Для предложенного символа получим: 0х10COC – 0x10000 = 0xC0C.

  2. Для полученного значения выделить старшие 10 бит и младшие 10 бит. В примере число 0хС0С в бинарном виде представляется, как 00000000110000001100, где жирным выделены 10 старших бит, а подчеркиванием – 10 младших.

  3. К шестнадцатеричному значению 0xD800 (11011000 00000000) прибавить значение 0х03 (00000000 00000011), сформированное 10 старшими битами, полученными на предыдущем шаге. 0xD800 + 0х03 =  0хD803 (11011000 00000011) – 16 старших бит кодового слова UTF-16.

  4. К шестнадцатеричному значению 0xDC00 (11011000 00000000) прибавить значение 0х0C (00000000 00001100), сформированное 10 младшими битами, полученными на шаге №2. 0xDС00 + 0х0С =  DС0С (11011100 00001100) – 16 младших бит кодового слова UTF-16.

  5. Кодовое слово UTF-16, соответствующее символу в примере, формируется из бит, полученных на шагах 3 и 4: 0хD803DC0C (11011000 00000011 11011100 00001100).

Сравнение стандартов UTF-8 и UTF-16 с точки зрения объема машинной памяти, используемой кодом для представления символов

Результаты сравнения стандартов представлены в таблице 1.

Таблица 1. Результаты сравнения стандартов.

Диапазон   номеров 

0-127

128 — 2047

2048-32767

32768-65535

65535-

1048575

1048575-…

UTF-8

8

16

24

32

32

_

UTF-16

16

16

16

16

32

32

В ячейках таблицы 1 содержится количество бит, требуемое для кодирования одного символа из таблицы Юникод. Видно, что для диапазонов номеров ячеек 128-2047, 65535-1048575 стандарты UTF-8 и UTF-16 используют одинаковое количество бит. Для диапазона 0-127 выгодно использование стандарта UTF-8, например, в случае, если программисту поручили реализовать кодер букв английского алфавита. Для диапазонов 2048-32767 и 32768-65535 выгодно использование стандарта UTF-16, например, в случае, если программисту поручили реализовать кодер иероглифов Бопомофо (занимают в таблице Юникод диапазон ячеек 12549-12589). Кодирование символов таблицы Юникод, расположенных в ячейках, номера которых начинаются от 1048575 возможно только с использованием кодировки UTF-16. 

В предыдущих главах приведены примеры кодирования фразы «Папа Hello» стандартами UTF-8 и UTF-16. Кодировкой UTF-8 используются 14 байт, кодировкой UTF-16 20 байт, что связано с избыточностью кодирования англоязычных символов во втором случае из-за использования дополнительного байта 0х00. Можно сделать вывод, что для кодирования текста содержащего набор букв русского и английского алфавитов, предпочтительно использование кодировки UTF-8.

Вывод: в зависимости от языка алфавита может быть выбрана как кодировка UTF-8, так и кодировка UTF-16. Для английского алфавита однозначно более выгодно использование кодировки UTF-8, для русского алфавита буквы представляются одинаковым количеством бит при использовании как одной, так и другой кодировки.

Несколько советов программистам

Допустим, программист решил реализовать текстовый редактор, поддерживающий алфавит языка Бопомофо. Символы данного языка располагаются в таблице Юникод в диапазоне 12549-12589 и, следовательно, программисту необходимо выбрать стандарт UTF-16 для кодирования. Предположим, что для ввода символов решено использовать программную клавиатуру, состоящую из кнопок, каждая из которых соответствует букве алфавита языка. Кнопки – объекты класса button. Нажатие пользователем на какую-либо из кнопок порождает событие, в результате которого приложению становится известен номер ячейки таблицы Юникод. Программисту рекомендуется:

1.Хранить в памяти приложения символы таблицы Юникод и номера ячеек, соответствующие только языкам, поддержка которых планируется в текстовом редакторе. Это уменьшит объем памяти, занимаемой приложением, а также повысит скорость его работы, сузив область поиска номера ячейки.

2.  При реализации приложения заранее выполнить преобразование всех номеров ячеек в их бинарные коды. Результат преобразования сохранить в файле, в формализованном виде. При загрузке приложения выполнить считывание в память номеров ячеек и их бинарных кодов UTF-16. Это позволит снизить вычислительную нагрузку приложения в ходе его работы.

3. Для хранения номеров ячеек и их бинарных кодов использовать объект класса, позволяющего осуществить это в виде ключ-значение, где ключ – номер ячейки, а значение – бинарный код. Классы, реализующие в языках программирования данный функционал, организуют работу таким образом, чтобы минимизировать время поиска ключа, используя сортировку ключей или хеширование.

Отметим проблему кодирования составных символов, которая является важным техническим аспектом. Например, символ ü может быть интерпретирован, как самостоятельный символ, которому соответствует номер ячейки 252 или может быть скомпонован из двух символов: u, которому соответствует номер ячейки 117 и символа ¨, которому соответствует номер ячейки 776. Программист должен строго придерживаться одного из вариантов представления таких символов иначе побайтовое сравнение строк будет невозможно. Рекомендуется использование второго варианта, который может облегчить поиск составных символов в тексте. Например, если пользователь осуществляет поиск символа u, то ему может быть выведен в качестве результата, как составной символ ü, так и самостоятельный u.

ссылка на оригинал статьи https://habr.com/ru/post/544084/


Комментарии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *