В этой статье мы изучим полиморфизм, разные типы полиморфизма и рассмотрим на примерах как мы можем реализовать полиморфизм в Python.
Что такое полиморфизм?
В буквальном значении полиморфизм означает множество форм.
Полиморфизм — очень важная идея в программировании. Она заключается в использовании единственной сущности(метод, оператор или объект) для представления различных типов в различных сценариях использования.
Давайте посмотрим на пример:
Пример 1: полиморфизм оператора сложения
Мы знаем, что оператор + часто используется в программах на Python. Но он не имеет единственного использования.
Для целочисленного типа данных оператор + используется чтобы сложить операнды.
num1 = 1 num2 = 2 print(num1 + num2)
Итак, программа выведет на экран 3.
Подобным образом оператор + для строк используется для конкатенации.
str1 = "Python" str2 = "Programming" print(str1+" "+str2)
В результате будет выведено Python Programming.
Здесь мы можем увидеть единственный оператор + выполняющий разные операции для различных типов данных. Это один из самых простых примеров полиморфизма в Python.
Полиморфизм функций
В Python есть некоторые функции, которые могут принимать аргументы разных типов.
Одна из таких функций — len(). Она может принимать различные типы данных. Давайте посмотрим на примере, как это работает.
Пример 2: полиморфизм на примере функции len()
print(len("Programiz")) print(len(["Python", "Java", "C"])) print(len({"Name": "John", "Address": "Nepal"}))
Вывод:
9 3 2
Здесь мы можем увидеть, что различные типы данных, такие как строка, список, кортеж, множество и словарь могут работать с функцией len(). Однако, мы можем увидеть, что она возвращает специфичную для каждого типа данных информацию.

Полиморфизм в классах
Полиморфизм — очень важная идея в объектно-ориентированном программировании.
Чтобы узнать больше об ООП в Python, посетите эту статью: Python Object-Oriented Programming.
Мы можем использовать идею полиморфизма для методов класса, так как разные классы в Python могут иметь методы с одинаковым именем.
Позже мы сможем обобщить вызов этих методов, игнорируя объект, с которым мы работаем. Давайте взглянем на пример:
Пример 3: полиморфизм в методах класса
class Cat: def __init__(self, name, age): self.name = name self.age = age def info(self): print(f"I am a cat. My name is {self.name}. I am {self.age} years old.") def make_sound(self): print("Meow") class Dog: def __init__(self, name, age): self.name = name self.age = age def info(self): print(f"I am a dog. My name is {self.name}. I am {self.age} years old.") def make_sound(self): print("Bark") cat1 = Cat("Kitty", 2.5) dog1 = Dog("Fluffy", 4) for animal in (cat1, dog1): animal.make_sound() animal.info() animal.make_sound()
Вывод:
Meow I am a cat. My name is Kitty. I am 2.5 years old. Meow Bark I am a dog. My name is Fluffy. I am 4 years old. Bark
Здесь мы создали два класса Cat и Dog. У них похожая структура и они имеют методы с одними и теми же именами info() и make_sound().
Однако, заметьте, что мы не создавали общего класса-родителя и не соединяли классы вместе каким-либо другим способом. Даже если мы можем упаковать два разных объекта в кортеж и итерировать по нему, мы будем использовать общую переменную animal. Это возможно благодаря полиморфизму.
Полиморфизм и наследование
Как и в других языках программирования, в Python дочерние классы могут наследовать методы и атрибуты родительского класса. Мы можем переопределить некоторые методы и атрибуты специально для того, чтобы они соответствовали дочернему классу, и это поведение нам известно как переопределение метода(method overriding).
Полиморфизм позволяет нам иметь доступ к этим переопределённым методам и атрибутам, которые имеют то же самое имя, что и в родительском классе.
Давайте рассмотрим пример:
Пример 4: переопределение метода
from math import pi class Shape: def __init__(self, name): self.name = name def area(self): pass def fact(self): return "I am a two-dimensional shape." def __str__(self): return self.name class Square(Shape): def __init__(self, length): super().__init__("Square") self.length = length def area(self): return self.length**2 def fact(self): return "Squares have each angle equal to 90 degrees." class Circle(Shape): def __init__(self, radius): super().__init__("Circle") self.radius = radius def area(self): return pi*self.radius**2 a = Square(4) b = Circle(7) print(b) print(b.fact()) print(a.fact()) print(b.area())
Вывод:
Circle I am a two-dimensional shape. Squares have each angle equal to 90 degrees. 153.93804002589985
Здесь мы можем увидеть, что такие методы как __str__(), которые не были переопределены в дочерних классах, используются из родительского класса.
Благодаря полиморфизму интерпретатор питона автоматически распознаёт, что метод fact() для объекта a(класса Square) переопределён. И использует тот, который определён в дочернем классе.
С другой стороны, так как метод fact() для объекта b не переопределён, то используется метод с таким именем из родительского класса(Shape).

Заметьте, что перегрузка методов(method overloading) — создание методов с одним и тем же именем, но с разными типами аргументов не поддерживается в питоне.
ссылка на оригинал статьи https://habr.com/ru/post/552922/
Добавить комментарий