Недавно я занимался изучением IoT и, так как мне не хватало устройств, при попытках симулировать работу прошивки я часто сталкивался с неимением нужного /dev/xxx. Так что я стал задумываться, а могу ли написать драйвер самостоятельно, чтобы заставить прошивку работать. Независимо от того, насколько сложно это будет, и удастся ли воплотить такое намерение, в любом случае вы не пожалеете, если научитесь разрабатывать драйвер Linux с нуля.
❯ Введение
Я написал серию статей, ориентированных в основном на практику, о теории там мало что говорится. Разрабатывать драйверы я научился по книге Linux Device Drivers, а код к примерам, разобранным в этой книге, выложен на GitHub.
Если начать с азов – операционная система Linux делится на пространство ядра и пользовательское пространство. Доступ к аппаратному устройству возможен только через пространство ядра, а драйвер устройства при этом может трактоваться как API, предоставляемый в пространстве ядра и позволяющий коду из пользовательского пространства обращаться к устройству.
Опираясь на эти базовые концепции, я сформулировал для себя несколько проблем, которые и побудили меня изучить разработку драйвера.
- В программировании учёба всегда начинается с программы Hello World, так как же в данном случае написать программу Hello World?
- Как драйвер генерирует файлы устройств под /dev?
- Как именно происходит доступ драйвера к имеющемуся аппаратному обеспечению?
- Как написать код, управляемый системой? Или можно извлечь драйвер без кода? Где находятся двоичные файлы, в которых хранятся драйвера? В будущем все это можно было бы опробовать, чтобы изучить, насколько безопасно конкретное устройство.
❯ Всё начинается с Hello World
Вот какой получилась моя программа Hello World:
#include <linux/init.h> #include <linux/module.h> MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Hcamal"); int hello_init(void) { printk(KERN_INFO "Hello World\n"); return 0; } void hello_exit(void) { printk(KERN_INFO "Goodbye World\n"); } module_init(hello_init); module_exit(hello_exit);
Драйвер Linux разрабатывается на языке C, причём, на таком, который не слишком мне привычен. При работе я часто пользуюсь библиотекой Libc, которая отсутствует в ядре. Поскольку драйвер – это программа, работающая в ядре, именно в ядре мы используем и библиотечные функции.
Например, printk — это функция вывода, определяемая в ядре, она аналогична printf из Libc. Но мне она в большей степени напоминает логирующую функцию из Python, так как вывод printk идёт разу в лог ядра, а этот лог можно просмотреть командой dmesg.
В коде драйвера есть ровно одна точка входа и одна точка выхода. При загрузке драйвера в ядро выполнится функция, определяемая функцией module_init, которая в вышеприведённом коде называется hello_init. При выгрузке драйвера из ядра вызывается функция, определяемая в функции module_exit, которая в вышеприведённом коде называется hello_exit.
Из показанного выше кода понятно, что, загружаясь, драйвер выводит Hello World, а выгружаясь — Goodbye World.
Кстати: MODULE_LICENSE и MODULE_AUTHOR не так важны. Здесь я не буду подробно их разбирать.
И ещё: для вывода функции printk должен добавляться переход на новую строку, иначе опорожнение буфера происходить не будет.
❯ Компилируем драйвер
Драйвер необходимо скомпилировать командой make, и соответствующий Makefile показан ниже:
ifneq ($(KERNELRELEASE),) obj-m := hello.o else KERN_DIR ?= /usr/src/linux-headers-$(shell uname -r)/ PWD := $(shell pwd) default: $(MAKE) -C $(KERN_DIR) M=$(PWD) modules endif clean: rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions
Вообще исходный код ядра находится в каталоге /usr/src/linux-headers-$(shell uname -r)/, например:
$ uname -r 4.4.0-135-generic/usr/src/linux-headers-4.4.0-135/ --> каталог исходного кода ядра /usr/src/linux-headers-4.4.0-135-generic/ --> каталог скомпилированного исходного кода для данного ядра
А нам нужен каталог для скомпилированных исходников, а именно /usr/src/linux-headers-4.4.0-135-generic/.
Поиск заголовочных файлов для драйверного кода осуществляется именно из этого каталога.
Параметр M=$(PWD) указывает, что вывод от компиляции драйвера попадает именно в текущий каталог.
Наконец, вот команда obj-m := hello.o, предназначенная для загрузки hello.o в hello.ko, а ko – это файл из пространства ядра.
❯ Загружаем драйвер в ядро
Вот некоторые системные команды, которые нам при этом понадобятся:
Lsmod: просмотр модуля ядра, загружаемого в настоящий момент.Insmod: загрузка модуля ядра с последующим требованием прав администратора.Rmmod: удаление модуля.
Например:
# insmod hello.ko // Load the hello.ko module into the kernel # rmmod hello // Remove the hello module from the kernel
В старых версиях ядра таким же методом загружалось и удалялось само ядро, но в новых версиях ядра Linux здесь добавляется верификация модуля. Вот в какой ситуации мы сейчас находимся:
# insmod hello.ko insmod: ERROR: could not insert module hello.ko: Required key not available
С точки зрения безопасности актуальное ядро предполагает, что данный модуль не вызывает доверия. Чтобы этот модуль мог быть загружен, его нужно подписать доверенным сертификатом.
Это можно сделать двумя способами:
- Войти в BIOS и отключить безопасную загрузку в UEFI.
- Добавить в ядро самоподписываемый сертификат, и именно с его помощью подписать модуль драйвера (подробнее об этом написано тут).
❯ View the Results

❯ Добавляем файлы устройств под /dev
Once again, we firstly provide the code, and then explain the example code.
#include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> /* printk() */ #include <linux/slab.h> /* kmalloc() */ #include <linux/fs.h> /* everything... */ #include <linux/errno.h> /* error codes */ #include <linux/types.h> /* size_t */ #include <linux/fcntl.h> /* O_ACCMODE */ #include <linux/cdev.h> #include <asm/uaccess.h> /* copy_*_user */ MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Hcamael"); int scull_major = 0; int scull_minor = 0; int scull_nr_devs = 4; int scull_quantum = 4000; int scull_qset = 1000; struct scull_qset { void **data; struct scull_qset *next; }; struct scull_dev { struct scull_qset *data; /* Pointer to first quantum set. */ int quantum; /* The current quantum size. */ int qset; /* The current array size. */ unsigned long size; /* Amount of data stored here. */ unsigned int access_key; /* Used by sculluid and scullpriv. */ struct mutex mutex; /* Mutual exclusion semaphore. */ struct cdev cdev; /* Char device structure. */ }; struct scull_dev *scull_devices; /* allocated in scull_init_module */ /* * Follow the list. */ struct scull_qset *scull_follow(struct scull_dev *dev, int n) { struct scull_qset *qs = dev->data; /* Allocate the first qset explicitly if need be. */ if (! qs) { qs = dev->data = kmalloc(sizeof(struct scull_qset), GFP_KERNEL); if (qs == NULL) return NULL; memset(qs, 0, sizeof(struct scull_qset)); } /* Then follow the list. */ while (n--) { if (!qs->next) { qs->next = kmalloc(sizeof(struct scull_qset), GFP_KERNEL); if (qs->next == NULL) return NULL; memset(qs->next, 0, sizeof(struct scull_qset)); } qs = qs->next; continue; } return qs; } /* * Data management: read and write. */ ssize_t scull_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos) { struct scull_dev *dev = filp->private_data; struct scull_qset *dptr; /* the first listitem */ int quantum = dev->quantum, qset = dev->qset; int itemsize = quantum * qset; /* how many bytes in the listitem */ int item, s_pos, q_pos, rest; ssize_t retval = 0; if (mutex_lock_interruptible(&dev->mutex)) return -ERESTARTSYS; if (*f_pos >= dev->size) goto out; if (*f_pos + count > dev->size) count = dev->size - *f_pos; /* Find listitem, qset index, and offset in the quantum */ item = (long)*f_pos / itemsize; rest = (long)*f_pos % itemsize; s_pos = rest / quantum; q_pos = rest % quantum; /* follow the list up to the right position (defined elsewhere) */ dptr = scull_follow(dev, item); if (dptr == NULL || !dptr->data || ! dptr->data[s_pos]) goto out; /* don't fill holes */ /* read only up to the end of this quantum */ if (count > quantum - q_pos) count = quantum - q_pos; if (raw_copy_to_user(buf, dptr->data[s_pos] + q_pos, count)) { retval = -EFAULT; goto out; } *f_pos += count; retval = count; out: mutex_unlock(&dev->mutex); return retval; } ssize_t scull_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) { struct scull_dev *dev = filp->private_data; struct scull_qset *dptr; int quantum = dev->quantum, qset = dev->qset; int itemsize = quantum * qset; int item, s_pos, q_pos, rest; ssize_t retval = -ENOMEM; /* Value used in "goto out" statements. */ if (mutex_lock_interruptible(&dev->mutex)) return -ERESTARTSYS; /* Find the list item, qset index, and offset in the quantum. */ item = (long)*f_pos / itemsize; rest = (long)*f_pos % itemsize; s_pos = rest / quantum; q_pos = rest % quantum; /* Follow the list up to the right position. */ dptr = scull_follow(dev, item); if (dptr == NULL) goto out; if (!dptr->data) { dptr->data = kmalloc(qset * sizeof(char *), GFP_KERNEL); if (!dptr->data) goto out; memset(dptr->data, 0, qset * sizeof(char *)); } if (!dptr->data[s_pos]) { dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL); if (!dptr->data[s_pos]) goto out; } /* Write only up to the end of this quantum. */ if (count > quantum - q_pos) count = quantum - q_pos; if (raw_copy_from_user(dptr->data[s_pos]+q_pos, buf, count)) { retval = -EFAULT; goto out; } *f_pos += count; retval = count; /* Update the size. */ if (dev->size < *f_pos) dev->size = *f_pos; out: mutex_unlock(&dev->mutex); return retval; } /* Beginning of the scull device implementation. */ /* * Empty out the scull device; must be called with the device * mutex held. */ int scull_trim(struct scull_dev *dev) { struct scull_qset *next, *dptr; int qset = dev->qset; /* "dev" is not-null */ int i; for (dptr = dev->data; dptr; dptr = next) { /* all the list items */ if (dptr->data) { for (i = 0; i < qset; i++) kfree(dptr->data[i]); kfree(dptr->data); dptr->data = NULL; } next = dptr->next; kfree(dptr); } dev->size = 0; dev->quantum = scull_quantum; dev->qset = scull_qset; dev->data = NULL; return 0; } int scull_release(struct inode *inode, struct file *filp) { printk(KERN_DEBUG "process %i (%s) success release minor(%u) file\n", current->pid, current->comm, iminor(inode)); return 0; } /* * Open and close */ int scull_open(struct inode *inode, struct file *filp) { struct scull_dev *dev; /* device information */ dev = container_of(inode->i_cdev, struct scull_dev, cdev); filp->private_data = dev; /* for other methods */ /* If the device was opened write-only, trim it to a length of 0. */ if ( (filp->f_flags & O_ACCMODE) == O_WRONLY) { if (mutex_lock_interruptible(&dev->mutex)) return -ERESTARTSYS; scull_trim(dev); /* Ignore errors. */ mutex_unlock(&dev->mutex); } printk(KERN_DEBUG "process %i (%s) success open minor(%u) file\n", current->pid, current->comm, iminor(inode)); return 0; } /* * The "extended" operations -- only seek. */ loff_t scull_llseek(struct file *filp, loff_t off, int whence) { struct scull_dev *dev = filp->private_data; loff_t newpos; switch(whence) { case 0: /* SEEK_SET */ newpos = off; break; case 1: /* SEEK_CUR */ newpos = filp->f_pos + off; break; case 2: /* SEEK_END */ newpos = dev->size + off; break; default: /* can't happen */ return -EINVAL; } if (newpos < 0) return -EINVAL; filp->f_pos = newpos; return newpos; } struct file_operations scull_fops = { .owner = THIS_MODULE, .llseek = scull_llseek, .read = scull_read, .write = scull_write, // .unlocked_ioctl = scull_ioctl, .open = scull_open, .release = scull_release, }; /* * Set up the char_dev structure for this device. */ static void scull_setup_cdev(struct scull_dev *dev, int index) { int err, devno = MKDEV(scull_major, scull_minor + index); cdev_init(&dev->cdev, &scull_fops); dev->cdev.owner = THIS_MODULE; dev->cdev.ops = &scull_fops; err = cdev_add (&dev->cdev, devno, 1); /* Fail gracefully if need be. */ if (err) printk(KERN_NOTICE "Error %d adding scull%d", err, index); else printk(KERN_INFO "scull: %d add success\n", index); } void scull_cleanup_module(void) { int i; dev_t devno = MKDEV(scull_major, scull_minor); /* Get rid of our char dev entries. */ if (scull_devices) { for (i = 0; i < scull_nr_devs; i++) { scull_trim(scull_devices + i); cdev_del(&scull_devices[i].cdev); } kfree(scull_devices); } /* cleanup_module is never called if registering failed. */ unregister_chrdev_region(devno, scull_nr_devs); printk(KERN_INFO "scull: cleanup success\n"); } int scull_init_module(void) { int result, i; dev_t dev = 0; /* * Get a range of minor numbers to work with, asking for a dynamic major * unless directed otherwise at load time. */ if (scull_major) { dev = MKDEV(scull_major, scull_minor); result = register_chrdev_region(dev, scull_nr_devs, "scull"); } else { result = alloc_chrdev_region(&dev, scull_minor, scull_nr_devs, "scull"); scull_major = MAJOR(dev); } if (result < 0) { printk(KERN_WARNING "scull: can't get major %d\n", scull_major); return result; } else { printk(KERN_INFO "scull: get major %d success\n", scull_major); } /* * Allocate the devices. This must be dynamic as the device number can * be specified at load time. */ scull_devices = kmalloc(scull_nr_devs * sizeof(struct scull_dev), GFP_KERNEL); if (!scull_devices) { result = -ENOMEM; goto fail; } memset(scull_devices, 0, scull_nr_devs * sizeof(struct scull_dev)); /* Initialize each device. */ for (i = 0; i < scull_nr_devs; i++) { scull_devices[i].quantum = scull_quantum; scull_devices[i].qset = scull_qset; mutex_init(&scull_devices[i].mutex); scull_setup_cdev(&scull_devices[i], i); } return 0; /* succeed */ fail: scull_cleanup_module(); return result; } module_init(scull_init_module); module_exit(scull_cleanup_module);
❯ Классификация драйверов

Драйверы делятся на три категории: символьные устройства, блочные устройства и сетевые интерфейсы. В вышеприведённом коде было разобрано символьное устройство, а обсуждение двух других категорий выходит за рамки этой статьи.
Как было показано выше, brw-rw-- — строка о правах доступа для блочных устройств начинается с буквы «b», а для символьных устройств начинается с буквы «c».
❯ О старших и младших числах
Старшее число отличает один драйвер от всех остальных. В принципе, если старшее число у устройств совпадает, это означает, что они управляются одним и тем же драйвером.
В одном каталоге drive может быть создано множество устройств, и отличаться они будут младшими числами. Вместе старшее и младшее число характеризуют устройство, управляемое драйвером (как показано выше).
brw-rw---- 1 root disk 8, 0 Dec 17 13:02 sda brw-rw---- 1 root disk 8, 1 Dec 17 13:02 sda1
Старшее число аппаратуры sda и sda1 это 8, а младших чисел здесь два: у одного устройства 0, а у другого 1.
❯ Как драйвер предоставляет API
Я привык считать, что /dev/xxx – это интерфейс, предоставляемый файлом, а в Linux «всё – файл». Поэтому, оперируя драйвером, мы, фактически, оперируем файлом, и именно в драйвере определяется define/open/read/write… что произойдёт с /dev/xxx. Любые мыслимые действия с API драйвера – это операции над файлами.
Какие операции над файлами здесь присутствуют? Все они определяются в структуре file_operations в заголовочном файле ядра <linux/fs.h>.
В коде, приведённом выше в качестве примера:
struct file_operations scull_fops = { .owner = THIS_MODULE, .llseek = scull_llseek, .read = scull_read, .write = scull_write, .open = scull_open, .release = scull_release, };
Я определяю структуру и присваиваю её. Не считая owner, значения всех остальных членов – это указатели функций.
Затем я применяю cdev_add, чтобы зарегистрировать структуру для файловых операций под каждый драйвер, это делается в функции scull_setup_cdev.
Например, совершая операцию “open” (открыть) с устройством под управлением драйвера, я выполняю функцию scull_open, что эквивалентно «перехвату» функции open в системном вызове.
❯ Как сгенерировать нужное нам устройство под /dev
Скомпилировав вышеприведённый код, получим scull.ko, затем подпишем его и, наконец, загрузим в ядро при помощи insmod.
Проверим, удачно ли он загрузился:

Да, драйвер устройства загрузился успешно, но он не создаёт файла устройства в каталоге /dev. Необходимо вручную воспользоваться mknod для связывания устройства:

❯ Итоги
В данном примере мы не совершали никаких операций с конкретным устройством, а просто воспользовались kmalloc, и с его помощью применили блок памяти в пространстве ядра.
Далее не буду вдаваться в детали о коде, все их можно уточнить, погуглив информацию или изучив заголовочные файлы.
В этой статье я хотел поделиться с вами, как самостоятельно научиться разрабатывать драйвера: сначала читать книги, чтобы усвоить базовые концепции, а затем искать информацию по конкретным деталям, когда дойдёт дело до практического применения.
Например, я не знаю, какой API может предоставить драйвер. Всё, что мне нужно знать – что такой API ограничивается файловыми операциями. На данный момент мне понадобятся только операциями open, close, read и write. Как делаются другие операции с файлами – можно уточнить при необходимости.
Ссылки
ссылка на оригинал статьи https://habr.com/ru/company/timeweb/blog/724282/

Добавить комментарий