Команда Python for Devs подготовила перевод статьи Элa Свейгарта о неудачных экспериментах с vibe coding. Все говорят, что ИИ уже умеет писать приложения, но стоит чуть отклониться от привычных сценариев — и всё идёт наперекосяк. Картофельная Африка вместо карты, пинбол, превращающийся в пинг-понг, и счёты с отрицательными числами — автор собрал коллекцию своих провалов с vibe coding.
Последнюю неделю я экспериментировал с vibe coding: просил LLM-модели вроде ChatGPT, Claude и Gemini написать полноценные приложения так, будто у меня нет вообще никаких навыков программирования. LLM легко решают задачи на кодинг или собеседовательные вопросы. Но мне хотелось проверить, насколько далеко они способны зайти, если попросить их создать готовые приложения, и какие типичные сбои при этом проявляются. В роли «непрограммиста» я мог бы исправлять баги только описывая их LLM. Для простоты я выбрал небольшие приложения на Python, использующие только стандартную библиотеку и пакет tkinter для GUI. В этом посте я рассказываю об этих провалах — о тех случаях, где ИИ просто не справляется.
Меня не волнует изысканный или красивый интерфейс (в конце концов, тут всё ограничено tkinter). Важно понять, запускается ли приложение без серьёзных ошибок. Для этих экспериментов я использовал ChatGPT 5, Gemini 2.5 Pro и Claude Sonnet 4.
В тексте я привожу исходный код некоторых программ, сгенерированных LLM. Если вам удастся довести до рабочего состояния любую из этих идей, мне будет интересно узнать о результатах: al@inventwithpython.com.
Паттерны неудач в приложениях от LLM
Обычно LLM не удавалось создать софт со следующими характеристиками:
-
Немного необычные задачи. Любое приложение, которое не реализовывалось сотни раз (Тетрис, секундомер, список дел и т. п.).
-
Требующие пространственных или визуальных характеристик. LLM генерируют текст, но работа с координатами или отрисовкой у них быстро разваливается.
-
Похожие, но не идентичные типовые приложения. Если попросить сделать пинбол — получается пинг-понг. Если нужны аморфные пятна, как в лавовой лампе, LLM рисуют идеальные круги. Модели скатываются к знакомым, но неточным примерам, иногда даже несмотря на прямые указания не делать этого.
Список провалившихся экспериментов с vibe coding:
-
Викторина по географии стран Африки
-
Игра «Пинбол»
-
Генератор круговых лабиринтов
-
Интерактивные китайские счеты
-
Симулятор кодового замка
-
Редактор генеалогических деревьев
-
Симулятор лавовой лампы
-
Симулятор снежного шара
Викторина по географии стран Африки
Промпт:
Создай программу на Python с использованием tkinter для GUI и только пакетов из стандартной библиотеки. Приложение показывает простую карту Африки без границ между странами, только контур Африки. Оно выводит название случайной африканской страны, затем пользователь должен кликнуть по карте. Приложение показывает контур этой страны на карте на несколько секунд, после чего выводит название следующей случайной страны. Для простоты в приложении нет очков или баллов. Приложение не сообщает, попал ли пользователь в границы страны, или нет (он и так увидит это, когда появится контур страны). Чтобы упростить, точки остановки нет: викторина продолжается, пока пользователь не закроет окно приложения.
Результат: LLM постоянно «забывают», что Мадагаскар — часть Африки, если им об этом не напоминать. Еще кажется, что LLM считают, будто Африка по форме как картошка.

Я рассчитывал на нечто похожее на эту викторину по географии: показывается Африка без границ стран, а затем пользователю предлагают кликнуть по заданной стране.
Одна из LLM выдала что-то отдаленно похожее на Африку и даже нарисовала Мадагаскар (после того как я напомнил, что он — часть Африки). Но формы стран были… мягко говоря, неточными. Я просил их найти в интернете SVG-файлы карт Африки. Они отвечали, что нашли, а затем снова рисовали картошку.
fail_africa_1.py
import tkinter as tk from tkinter import ttk import random import math class AfricaGeographyQuiz: def __init__(self): self.root = tk.Tk() self.root.title("African Geography Quiz") self.root.geometry("800x700") self.root.configure(bg='lightblue') # African countries and their approximate center coordinates (normalized 0-1) self.countries = { 'Algeria': (0.5, 0.25), 'Angola': (0.35, 0.75), 'Benin': (0.45, 0.55), 'Botswana': (0.55, 0.8), 'Burkina Faso': (0.4, 0.5), 'Burundi': (0.65, 0.7), 'Cameroon': (0.5, 0.6), 'Cape Verde': (0.15, 0.45), 'Central African Republic': (0.55, 0.6), 'Chad': (0.55, 0.5), 'Comoros': (0.8, 0.75), 'Democratic Republic of the Congo': (0.55, 0.7), 'Republic of the Congo': (0.5, 0.65), 'Djibouti': (0.8, 0.5), 'Egypt': (0.65, 0.25), 'Equatorial Guinea': (0.48, 0.6), 'Eritrea': (0.75, 0.45), 'Eswatini': (0.65, 0.85), 'Ethiopia': (0.75, 0.55), 'Gabon': (0.48, 0.65), 'Gambia': (0.25, 0.5), 'Ghana': (0.4, 0.55), 'Guinea': (0.3, 0.5), 'Guinea-Bissau': (0.25, 0.5), 'Ivory Coast': (0.35, 0.55), 'Kenya': (0.75, 0.65), 'Lesotho': (0.6, 0.85), 'Liberia': (0.3, 0.55), 'Libya': (0.55, 0.3), 'Madagascar': (0.85, 0.8), 'Malawi': (0.7, 0.75), 'Mali': (0.4, 0.45), 'Mauritania': (0.3, 0.4), 'Mauritius': (0.9, 0.8), 'Morocco': (0.35, 0.2), 'Mozambique': (0.7, 0.8), 'Namibia': (0.5, 0.8), 'Niger': (0.5, 0.45), 'Nigeria': (0.5, 0.55), 'Rwanda': (0.65, 0.7), 'Sao Tome and Principe': (0.45, 0.6), 'Senegal': (0.25, 0.45), 'Seychelles': (0.9, 0.7), 'Sierra Leone': (0.28, 0.55), 'Somalia': (0.85, 0.6), 'South Africa': (0.6, 0.85), 'South Sudan': (0.65, 0.55), 'Sudan': (0.65, 0.45), 'Tanzania': (0.7, 0.7), 'Togo': (0.43, 0.55), 'Tunisia': (0.5, 0.2), 'Uganda': (0.7, 0.65), 'Zambia': (0.6, 0.75), 'Zimbabwe': (0.65, 0.8) } self.current_country = None self.showing_answer = False self.setup_ui() self.next_question() def setup_ui(self): # Title title_label = tk.Label(self.root, text="African Geography Quiz", font=('Arial', 20, 'bold'), bg='lightblue', fg='darkblue') title_label.pack(pady=10) # Instructions instructions = tk.Label(self.root, text="Click on the map where you think the country is located!", font=('Arial', 12), bg='lightblue', fg='darkgreen') instructions.pack(pady=5) # Country prompt self.country_label = tk.Label(self.root, text="", font=('Arial', 16, 'bold'), bg='lightblue', fg='red') self.country_label.pack(pady=10) # Canvas for the map self.canvas = tk.Canvas(self.root, width=600, height=500, bg='lightcyan') self.canvas.pack(pady=10) self.canvas.bind("<Button-1>", self.on_map_click) # Draw Africa outline self.draw_africa_outline() def draw_africa_outline(self): """Draw a simplified outline of Africa""" # Simplified Africa outline coordinates (scaled to canvas) africa_points = [ # Starting from northwest, going clockwise 100, 150, # Morocco area 120, 140, # North Morocco 140, 130, # Algeria 200, 120, # Tunisia 250, 130, # Libya 350, 140, # Egypt 370, 160, # Egypt east 380, 200, # Red Sea 390, 250, # Sudan/Eritrea 400, 300, # Ethiopia 420, 350, # Somalia 430, 400, # Kenya 440, 450, # Tanzania 450, 480, # Mozambique north 460, 500, # Mozambique 450, 520, # South Africa east 400, 530, # South Africa 350, 525, # Lesotho area 300, 520, # South Africa west 250, 510, # Namibia 200, 500, # Angola 150, 480, # Angola north 120, 450, # DRC 100, 400, # Cameroon 90, 350, # Nigeria 85, 300, # Niger 80, 250, # Mali 75, 200, # Mauritania 80, 180, # Morocco west 100, 150 # Back to start ] self.canvas.create_polygon(africa_points, outline='black', fill='tan', width=2) def next_question(self): """Select a random country for the next question""" if self.showing_answer: return self.current_country = random.choice(list(self.countries.keys())) self.country_label.config(text=f"Find: {self.current_country}") # Clear any previous answer markers self.canvas.delete("answer_marker") def on_map_click(self, event): """Handle clicks on the map""" if self.showing_answer: return # Show where the user clicked self.canvas.create_oval(event.x-5, event.y-5, event.x+5, event.y+5, fill='blue', outline='darkblue', width=2, tags="click_marker") # Show the correct location self.show_answer() def show_answer(self): """Show the correct location of the country""" self.showing_answer = True # Get the country's coordinates and convert to canvas coordinates country_coords = self.countries[self.current_country] canvas_x = country_coords[0] * 600 # Scale to canvas width canvas_y = country_coords[1] * 500 # Scale to canvas height # Adjust coordinates to fit within Africa outline canvas_x = max(75, min(525, canvas_x)) canvas_y = max(120, min(480, canvas_y)) # Draw the correct location marker self.canvas.create_oval(canvas_x-8, canvas_y-8, canvas_x+8, canvas_y+8, fill='red', outline='darkred', width=3, tags="answer_marker") # Draw country name near the marker self.canvas.create_text(canvas_x, canvas_y-20, text=self.current_country, font=('Arial', 10, 'bold'), fill='darkred', tags="answer_marker") # Schedule next question self.root.after(3000, self.prepare_next_question) def prepare_next_question(self): """Prepare for the next question""" self.showing_answer = False # Clear click markers self.canvas.delete("click_marker") # Answer markers will be cleared in next_question self.next_question() def run(self): """Start the application""" self.root.mainloop() if __name__ == "__main__": app = AfricaGeographyQuiz() app.run()
fail_africa_2.py
import tkinter as tk import random # --- High-Resolution Coordinate Data --- # This data provides more detailed outlines for the continent and countries. # Coordinates are in (longitude, latitude) format. AFRICA_DATA = { "Algeria": [[(8.68, 28.97), (8.68, 36.8), (3.28, 36.8), (-1.9, 35.9), (-8.67, 30.9), (-8.67, 21.5), (-4.2, 25.0), (2.4, 23.4), (5.5, 19.3), (11.9, 23.9), (9.5, 28.0), (8.68, 28.97)]], "Angola": [[(13.2, -4.8), (11.7, -17.9), (24.0, -17.9), (24.0, -10.7), (22.0, -11.2), (21.8, -4.8), (16.5, -5.9), (13.2, -4.8)]], "Botswana": [[(20.0, -17.7), (20.0, -26.9), (25.3, -25.8), (29.4, -22.1), (26.7, -20.2), (20.0, -17.7)]], "Cameroon": [[(8.4, 2.2), (16.2, 2.2), (16.2, 13.1), (12.5, 10.5), (10.5, 11.5), (9.3, 9.5), (8.4, 4.5), (8.4, 2.2)]], "Chad": [[(13.4, 7.4), (24.0, 7.4), (24.0, 19.5), (20.0, 23.4), (15.0, 23.4), (14.3, 12.8), (13.4, 7.4)]], "Democratic Republic of the Congo": [[(12.2, -5.8), (12.2, -13.4), (29.4, -13.4), (31.2, -8.7), (29.5, -2.5), (30.8, 1.2), (30.0, 4.2), (18.5, 5.4), (16.7, 2.0), (12.2, -5.8)]], "Egypt": [[(25.0, 22.0), (25.0, 31.6), (34.0, 31.6), (36.9, 27.8), (34.8, 22.0), (25.0, 22.0)]], "Ethiopia": [[(33.0, 3.4), (44.0, 3.4), (48.0, 8.0), (43.0, 11.0), (42.2, 14.8), (36.3, 14.8), (35.0, 12.5), (33.0, 6.0), (33.0, 3.4)]], "Kenya": [[(33.9, -4.7), (40.9, -4.7), (41.9, -1.8), (41.0, 4.6), (34.5, 4.6), (34.0, 0.0), (33.9, -4.7)]], "Libya": [[(9.4, 19.5), (25.0, 19.5), (25.0, 31.6), (11.5, 33.0), (9.4, 29.0), (9.4, 19.5)]], "Madagascar": [[(43.2, -12.0), (50.5, -15.4), (49.5, -25.6), (43.7, -25.1), (43.2, -12.0)]], "Mali": [[(-12.2, 10.1), (4.2, 10.1), (4.2, 25.0), (-5.0, 25.0), (-11.5, 14.8), (-12.2, 10.1)]], "Morocco": [[(-13.1, 27.6), (-8.6, 27.6), (-8.6, 29.0), (-1.0, 32.0), (-1.0, 35.9), (-5.9, 35.9), (-8.8, 33.5), (-13.1, 27.6)]], "Mozambique": [[(30.2, -26.8), (40.8, -10.4), (35.0, -10.4), (32.5, -16.0), (30.2, -22.0), (30.2, -26.8)]], "Namibia": [[(11.7, -16.9), (11.7, -28.9), (20.0, -28.9), (20.0, -22.0), (25.2, -17.9), (23.0, -16.9), (11.7, -16.9)]], "Niger": [[(0.1, 11.9), (16.0, 11.9), (16.0, 20.2), (12.0, 23.5), (5.0, 23.5), (3.0, 16.0), (0.1, 11.9)]], "Nigeria": [[(2.6, 4.2), (14.6, 4.2), (14.6, 13.8), (4.0, 13.8), (2.6, 6.4), (2.6, 4.2)]], "Somalia": [[(41.0, -1.7), (51.4, 10.0), (51.0, 12.0), (49.0, 11.8), (41.5, 1.8), (41.0, -1.7)]], "South Africa": [[(16.4, -28.5), (16.4, -34.8), (28.0, -34.8), (32.9, -26.8), (31.0, -22.1), (22.0, -22.1), (20.0, -24.7), (16.4, -28.5)]], "Sudan": [[(21.8, 9.7), (38.6, 9.7), (38.6, 18.0), (35.0, 22.0), (25.0, 22.0), (21.8, 12.0), (21.8, 9.7)]], "Tanzania": [[(29.6, -11.7), (40.4, -4.5), (39.0, -1.0), (30.5, -1.0), (29.6, -8.3), (29.6, -11.7)]], "Zambia": [[(22.0, -18.0), (33.7, -8.2), (28.7, -8.2), (25.0, -12.0), (22.0, -16.0), (22.0, -18.0)]], "Zimbabwe": [[(25.2, -22.4), (33.0, -22.4), (33.0, -15.6), (27.0, -15.6), (25.2, -18.0), (25.2, -22.4)]], } # Outline of the African continent, including Madagascar AFRICA_OUTLINE = [ # Mainland [(-17.5, 14.8), (-16.5, 12.0), (-13.0, 7.5), (-8.0, 4.5), (1.0, 4.5), (8.5, 4.5), (9.5, 1.5), (10.0, -1.0), (12.0, -6.0), (13.0, -10.0), (15.0, -18.0), (18.4, -28.7), (20.0, -34.8), (25.0, -34.8), (32.8, -28.0), (40.8, -10.4), (44.0, -1.0), (51.4, 11.8), (45.0, 15.0), (39.6, 15.8), (34.0, 22.0), (35.8, 30.0), (25.0, 31.5), (10.0, 33.0), (10.2, 37.3), (-5.4, 34.6), (-5.9, 35.9), (-8.8, 33.5), (-13.1, 27.6), (-17.5, 20.9), (-17.5, 14.8)], # Madagascar [(43.2, -12.0), (50.5, -15.4), (49.5, -25.6), (43.7, -25.1), (43.2, -12.0)] ] class AfricaQuizApp: """A simple geography quiz application for Africa.""" def __init__(self, root): """Initialize the application.""" self.root = root self.root.title("Africa Geography Quiz") self.root.configure(bg="#f0f0f0") # --- Configuration --- self.canvas_width = 600 self.canvas_height = 650 self.map_padding = 20 self.country_fill_color = "#3498db" # A nice blue self.africa_outline_color = "#555555" self.africa_fill_color = "#e0e0e0" self.reveal_duration_ms = 2000 # 2 seconds # --- State Variables --- self.current_country = None self.country_polygon_ids = [] # Store multiple polygon IDs self.country_list = list(AFRICA_DATA.keys()) # --- UI Elements --- self.info_label = tk.Label( self.root, text="Find this country:", font=("Helvetica", 14), bg="#f0f0f0" ) self.info_label.pack(pady=(10, 0)) self.country_label = tk.Label( self.root, text="", font=("Helvetica", 20, "bold"), bg="#f0f0f0", fg="#2c3e50" ) self.country_label.pack(pady=(0, 10)) self.canvas = tk.Canvas( self.root, width=self.canvas_width, height=self.canvas_height, bg="white", highlightthickness=0 ) self.canvas.pack(padx=20, pady=(0, 20)) self.canvas.bind("<Button-1>", self.on_map_click) # --- Setup --- self.calculate_map_bounds() self.draw_africa() self.next_country() def calculate_map_bounds(self): """Calculate the bounding box of all coordinates to scale the map.""" all_points = [] for part in AFRICA_OUTLINE: all_points.extend(part) for country_polygons in AFRICA_DATA.values(): for polygon in country_polygons: all_points.extend(polygon) longitudes = [p[0] for p in all_points] latitudes = [p[1] for p in all_points] self.min_lon = min(longitudes) self.max_lon = max(longitudes) self.min_lat = min(latitudes) self.max_lat = max(latitudes) # Calculate scale and offset to fit map in canvas lon_range = self.max_lon - self.min_lon lat_range = self.max_lat - self.min_lat scale_x = (self.canvas_width - 2 * self.map_padding) / lon_range scale_y = (self.canvas_height - 2 * self.map_padding) / lat_range self.scale = min(scale_x, scale_y) * 0.98 # Add a small margin # Calculate offsets to center the map map_width = lon_range * self.scale map_height = lat_range * self.scale self.x_offset = (self.canvas_width - map_width) / 2 self.y_offset = (self.canvas_height - map_height) / 2 def transform_coords(self, lon, lat): """Convert longitude and latitude to canvas coordinates.""" x = (lon - self.min_lon) * self.scale + self.x_offset # Invert Y because canvas (0,0) is top-left y = self.canvas_height - ((lat - self.min_lat) * self.scale + self.y_offset) return x, y def draw_africa(self): """Draw the main outline of Africa on the canvas.""" for part in AFRICA_OUTLINE: transformed_points = [self.transform_coords(lon, lat) for lon, lat in part] self.canvas.create_polygon( transformed_points, outline=self.africa_outline_color, fill=self.africa_fill_color, width=2 ) def next_country(self): """Selects and displays the next random country.""" # Clear the previously shown country polygon(s) if they exist for polygon_id in self.country_polygon_ids: self.canvas.delete(polygon_id) self.country_polygon_ids = [] # Pick a new random country self.current_country = random.choice(self.country_list) self.country_label.config(text=self.current_country) def on_map_click(self, event): """Handles the user clicking on the map.""" # Prevent multiple clicks while a country is being shown if self.country_polygon_ids: return self.show_country_outline() # Schedule the next country prompt after a delay self.root.after(self.reveal_duration_ms, self.next_country) def show_country_outline(self): """Draws the outline of the current country.""" if self.current_country: country_polygons = AFRICA_DATA[self.current_country] for polygon in country_polygons: transformed_points = [self.transform_coords(lon, lat) for lon, lat in polygon] # Draw each polygon part of the country and store its ID polygon_id = self.canvas.create_polygon( transformed_points, fill=self.country_fill_color, outline="white", width=1 ) self.country_polygon_ids.append(polygon_id) if __name__ == "__main__": root = tk.Tk() app = AfricaQuizApp(root) root.mainloop()
fail_africa_3.py
import tkinter as tk import random import time import threading # Very simplified Africa outline coordinates (replace with better outline if desired): AFRICA_OUTLINE = [ (50, 20), (100, 10), (160, 15), (200, 40), (240, 80), (250, 130), (230, 180), (210, 220), (170, 260), (120, 280), (80, 300), (60, 260), (50, 200), (40, 150), (40, 80) ] # Dictionary mapping country names to rough polygon coordinates. # (These are approximate positions and sizes – refine or expand as needed.) COUNTRY_COORDS = { "Egypt": [(160, 40), (200, 45), (200, 75), (160, 70)], "Nigeria": [(110, 145), (140, 145), (140, 175), (110, 175)], "South Africa": [(90, 230), (130, 230), (130, 260), (90, 260)], "Kenya": [(165, 130), (190, 130), (190, 160), (165, 160)], "Morocco": [(75, 50), (100, 50), (100, 80), (75, 80)], "Madagascar": [(245, 200), (265, 200), (265, 250), (245, 250)] } COUNTRY_LIST = list(COUNTRY_COORDS.keys()) class AfricaQuizApp: def __init__(self, root): self.root = root self.root.title("Africa Geography Quiz") self.canvas = tk.Canvas(root, width=300, height=320) self.canvas.pack() # Draw Africa outline self.canvas.create_polygon(AFRICA_OUTLINE, outline="black", fill="white") self.label = tk.Label(root, text="", font=("Arial", 14)) self.label.pack(pady=8) self.current_country = None self.country_outline = None self.canvas.bind("<Button-1>", self.on_click) self.next_country() def on_click(self, event): # Draw country outline regardless of whether click was "correct" if self.country_outline is not None: self.canvas.delete(self.country_outline) coords = COUNTRY_COORDS[self.current_country] self.country_outline = self.canvas.create_polygon( coords, outline="red", fill="", width=2 ) # Start a thread so the UI does not freeze threading.Thread(target=self.show_then_next).start() def show_then_next(self): time.sleep(2.0) # show the outline for two seconds self.canvas.delete(self.country_outline) self.country_outline = None self.next_country() def next_country(self): self.current_country = random.choice(COUNTRY_LIST) self.label.config(text=f"Click: {self.current_country}") if __name__ == "__main__": root = tk.Tk() app = AfricaQuizApp(root) root.mainloop()
Игра «Пинбол»
Промпт:
Создай простую игру в пинбол на Python с использованием tkinter или turtle и только стандартной библиотеки.
Результат: Без исключений LLM предлагали мне вариант пинг-понга с шариком, двигающимся с постоянной скоростью. Пришлось добавлять уточнения: не делать пинг-понг, добавить две лапки-флипперы, реализовать правдоподобную гравитацию и воронкообразные борта, направляющие шар к флипперам. LLM так и не сделали обработку столкновений и оставляли поле пинбола пустым. Я не ожидал «Space Cadet Pinball», но сколько ни переписывай промпт — ничего отдалённо приемлемого не получалось. Я также пробовал примеры на Pygame — на случай, если tkinter слишком ограничивает.
В одном случае левый флиппер был неправильно размещён, но вращался в правильную сторону, а правый — стоял правильно, но вращался в неправильную.

fail_pinball_1.py (использует Pygame)
import pygame import sys import math # Simple pinball game skeleton using Pygame def main(): pygame.init() WIDTH, HEIGHT = 600, 800 screen = pygame.display.set_mode((WIDTH, HEIGHT)) clock = pygame.time.Clock() # Ball properties ball_pos = [WIDTH // 2, HEIGHT // 4] ball_vel = [0, 0] gravity = 0.5 radius = 10 # Flipper properties left_flipper_angle = -30 right_flipper_angle = 30 flipper_length = 80 flipper_speed = 8 def draw_flipper(center, angle): x1, y1 = center x2 = x1 + flipper_length * math.cos(math.radians(angle)) y2 = y1 + flipper_length * math.sin(math.radians(angle)) pygame.draw.line(screen, (255, 255, 255), (x1, y1), (x2, y2), 8) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() keys = pygame.key.get_pressed() if keys[pygame.K_LEFT]: left_flipper_angle = max(-60, left_flipper_angle - flipper_speed) else: left_flipper_angle = min(-30, left_flipper_angle + flipper_speed) if keys[pygame.K_RIGHT]: right_flipper_angle = min(60, right_flipper_angle + flipper_speed) else: right_flipper_angle = max(30, right_flipper_angle - flipper_speed) # Update ball physics ball_vel[1] += gravity ball_pos[0] += ball_vel[0] ball_pos[1] += ball_vel[1] # Funnel walls if ball_pos[1] > HEIGHT - 200: if ball_pos[0] < WIDTH // 2: ball_vel[0] += 0.2 else: ball_vel[0] -= 0.2 # Boundary collision if ball_pos[0] < radius or ball_pos[0] > WIDTH - radius: ball_vel[0] *= -1 if ball_pos[1] < radius: ball_vel[1] *= -1 screen.fill((0, 0, 0)) # Draw funnel walls pygame.draw.line(screen, (255, 255, 255), (0, HEIGHT - 200), (WIDTH//2, HEIGHT), 4) pygame.draw.line(screen, (255, 255, 255), (WIDTH, HEIGHT - 200), (WIDTH//2, HEIGHT), 4) # Draw flippers draw_flipper((WIDTH//2 - 100, HEIGHT - 100), left_flipper_angle) draw_flipper((WIDTH//2 + 100, HEIGHT - 100), 180-right_flipper_angle) # Draw ball pygame.draw.circle(screen, (255, 255, 255), (int(ball_pos[0]), int(ball_pos[1])), radius) pygame.display.flip() clock.tick(60) if __name__ == "__main__": main()
Генератор круговых лабиринтов
Промпт:
Напиши программу на Python, которая использует только tkinter и стандартную библиотеку, чтобы сгенерировать картинку круглого лабиринта. Стены и границы лабиринта не должны быть прямыми линиями или прямоугольниками. Игрок начинает в центре и должен добраться до выхода сверху. Управление стрелками на клавиатуре; игрок не должен проходить сквозь стены.
Результат: LLM без труда генерируют программы для прямоугольных лабиринтов. Но круговые лабиринты получались жалкими подобиями: стены рассыпаны случайно, с недостижимыми участками и очевидными почти прямыми маршрутами. Порой LLM писала программу, которая при всем объёме кода просто показывала пустое окно. А управление с клавиатуры было полностью сломано и неисправимо.

fail_circlemaze_1.py
import tkinter as tk import math import random # --- Configuration --- CANVAS_SIZE = 800 MAZE_LEVELS = 15 # Number of concentric rings in the maze BACKGROUND_COLOR = '#F0F0F0' WALL_COLOR = '#333333' WALL_WIDTH = 2 SOLUTION_COLOR = '#E74C3C' # Color for the solution path (optional) class CircularMaze: """ A class to generate and hold the data for a circular maze. The maze is represented as a grid of cells, where each cell is a sector of a concentric ring. """ def __init__(self, levels, sectors_in_first_level=8): """ Initializes the circular maze structure. Args: levels (int): The number of concentric rings (levels). sectors_in_first_level (int): The number of cells in the innermost ring. Each subsequent ring will have more sectors. """ self.levels = levels self.grid = [] self.solution = {} # --- FIX --- # The original maze generation had a flaw where the number of sectors in # one ring was not always an integer multiple of the sectors in the # previous ring. This broke the neighbor-finding logic and resulted in # unreachable areas. # # This corrected logic ensures that the ratio of sectors between # adjacent rings is always an integer (1 or 2), allowing the DFS # algorithm to create a perfect, fully connected maze. We now double # the number of sectors every few rings. sectors_list = [] current_sectors = sectors_in_first_level # This value controls how often the maze complexity increases. doubling_frequency = 3 for r in range(levels): # Double the number of sectors every `doubling_frequency` rings. if r > 0 and r % doubling_frequency == 0: current_sectors *= 2 sectors_list.append(current_sectors) # Create the grid using the pre-calculated sector counts. for sectors in sectors_list: # Each cell has two walls: 'cw' (clockwise) and 'out' (outward). # A 'True' value means the wall exists. self.grid.append([{'cw': True, 'out': True} for _ in range(sectors)]) def get_neighbors(self, r, c): """ Finds all valid neighbors for a given cell (r, c). This handles the complexity of connecting cells between rings of different sector counts. """ neighbors = [] sectors_curr = len(self.grid[r]) # Clockwise neighbor neighbors.append(((r, (c + 1) % sectors_curr), 'cw')) # Counter-clockwise neighbor neighbors.append(((r, (c - 1 + sectors_curr) % sectors_curr), 'ccw')) # Outward neighbors if r + 1 < self.levels: sectors_next = len(self.grid[r+1]) ratio = sectors_next / sectors_curr for i in range(int(ratio)): neighbors.append(((r + 1, int(c * ratio) + i), 'out')) # Inward neighbors if r > 0: sectors_prev = len(self.grid[r-1]) ratio = sectors_curr / sectors_prev neighbors.append(((r - 1, int(c / ratio)), 'in')) return neighbors def generate(self): """ Generates the maze using a randomized depth-first search (DFS) algorithm. It carves paths by removing walls between cells. """ start_r, start_c = random.randint(0, self.levels - 1), 0 stack = [(start_r, start_c)] visited = set([(start_r, start_c)]) while stack: current_r, current_c = stack[-1] # Find unvisited neighbors unvisited_neighbors = [] for (nr, nc), direction in self.get_neighbors(current_r, current_c): if 0 <= nr < self.levels and 0 <= nc < len(self.grid[nr]): if (nr, nc) not in visited: unvisited_neighbors.append(((nr, nc), direction)) if unvisited_neighbors: # Choose a random unvisited neighbor (next_r, next_c), direction = random.choice(unvisited_neighbors) # Remove the wall between the current cell and the chosen neighbor if direction == 'cw': self.grid[current_r][current_c]['cw'] = False elif direction == 'ccw': self.grid[next_r][next_c]['cw'] = False elif direction == 'out': self.grid[current_r][current_c]['out'] = False elif direction == 'in': self.grid[next_r][next_c]['out'] = False self.solution[(next_r, next_c)] = (current_r, current_c) visited.add((next_r, next_c)) stack.append((next_r, next_c)) else: # Backtrack if there are no unvisited neighbors stack.pop() # Create an entrance and an exit self.grid[0][0]['cw'] = False # Entrance at the center self.grid[self.levels-1][0]['out'] = False # Exit at the outer edge def draw(self, canvas): """ Draws the entire maze on the provided tkinter canvas. """ canvas.delete("all") width = int(canvas.cget("width")) height = int(canvas.cget("height")) center_x, center_y = width / 2, height / 2 # The first ring is a gap, so we start drawing from an offset ring_thickness = (min(width, height) / 2) / (self.levels + 1) # Iterate through each cell to draw its walls for r, level in enumerate(self.grid): sectors = len(level) angle_step = 360 / sectors for c, cell in enumerate(level): radius_inner = (r + 1) * ring_thickness radius_outer = (r + 2) * ring_thickness angle_start = c * angle_step angle_end = (c + 1) * angle_step # Draw the outward wall (an arc) if cell['out']: canvas.create_arc( center_x - radius_outer, center_y - radius_outer, center_x + radius_outer, center_y + radius_outer, start=angle_start, extent=angle_step, style=tk.ARC, outline=WALL_COLOR, width=WALL_WIDTH ) # Draw the clockwise wall (a radial line) if cell['cw']: x1 = center_x + radius_inner * math.cos(math.radians(angle_end)) y1 = center_y + radius_inner * math.sin(math.radians(angle_end)) x2 = center_x + radius_outer * math.cos(math.radians(angle_end)) y2 = center_y + radius_outer * math.sin(math.radians(angle_end)) canvas.create_line(x1, y1, x2, y2, fill=WALL_COLOR, width=WALL_WIDTH) def generate_and_draw_maze(): """ Function to be called by the button to generate and draw a new maze. """ maze = CircularMaze(MAZE_LEVELS) maze.generate() maze.draw(canvas) # --- Main Application Setup --- if __name__ == "__main__": root = tk.Tk() root.title("Circular Maze Generator") root.configure(bg=BACKGROUND_COLOR) # --- UI Frame --- ui_frame = tk.Frame(root, bg=BACKGROUND_COLOR) ui_frame.pack(pady=10) title_label = tk.Label(ui_frame, text="Circular Maze Generator", font=("Helvetica", 16), bg=BACKGROUND_COLOR) title_label.pack(pady=(0, 10)) generate_button = tk.Button( ui_frame, text="Generate New Maze", font=("Helvetica", 12), command=generate_and_draw_maze ) generate_button.pack() # --- Canvas for Maze --- canvas_frame = tk.Frame(root) canvas_frame.pack(expand=True, fill=tk.BOTH, padx=20, pady=20) canvas = tk.Canvas( canvas_frame, width=CANVAS_SIZE, height=CANVAS_SIZE, bg='white', highlightthickness=0 ) canvas.pack(expand=True) # Generate the first maze on startup generate_and_draw_maze() root.mainloop()
fail_circlemaze_2.py
import tkinter as tk import math import random # --- Configuration --- CANVAS_SIZE = 800 MAZE_LEVELS = 15 # Number of concentric rings in the maze BACKGROUND_COLOR = '#F0F0F0' WALL_COLOR = '#333333' WALL_WIDTH = 2 SOLUTION_COLOR = '#E74C3C' # Color for the solution path (optional) class CircularMaze: """ A class to generate and hold the data for a circular maze. The maze is represented as a grid of cells, where each cell is a sector of a concentric ring. """ def __init__(self, levels, sectors_in_first_level=8): """ Initializes the circular maze structure. Args: levels (int): The number of concentric rings (levels). sectors_in_first_level (int): The number of cells in the innermost ring. Each subsequent ring will have more sectors. """ self.levels = levels self.grid = [] self.solution = {} # Create a grid where outer rings have more cells to keep cell sizes more uniform. # The number of sectors in a ring is proportional to its radius. for r in range(levels): sectors = sectors_in_first_level * (r + 1) # Each cell has two walls: 'cw' (clockwise) and 'out' (outward). # A 'True' value means the wall exists. self.grid.append([{'cw': True, 'out': True} for _ in range(sectors)]) def get_neighbors(self, r, c): """ Finds all valid neighbors for a given cell (r, c). This handles the complexity of connecting cells between rings of different sector counts. """ neighbors = [] sectors_curr = len(self.grid[r]) # Clockwise neighbor neighbors.append(((r, (c + 1) % sectors_curr), 'cw')) # Counter-clockwise neighbor neighbors.append(((r, (c - 1 + sectors_curr) % sectors_curr), 'ccw')) # Outward neighbors if r + 1 < self.levels: sectors_next = len(self.grid[r+1]) ratio = sectors_next / sectors_curr for i in range(int(ratio)): neighbors.append(((r + 1, int(c * ratio) + i), 'out')) # Inward neighbors if r > 0: sectors_prev = len(self.grid[r-1]) ratio = sectors_curr / sectors_prev neighbors.append(((r - 1, int(c / ratio)), 'in')) return neighbors def generate(self): """ Generates the maze using a randomized depth-first search (DFS) algorithm. It carves paths by removing walls between cells. """ start_r, start_c = random.randint(0, self.levels - 1), 0 stack = [(start_r, start_c)] visited = set([(start_r, start_c)]) while stack: current_r, current_c = stack[-1] # Find unvisited neighbors unvisited_neighbors = [] for (nr, nc), direction in self.get_neighbors(current_r, current_c): if 0 <= nr < self.levels and 0 <= nc < len(self.grid[nr]): if (nr, nc) not in visited: unvisited_neighbors.append(((nr, nc), direction)) if unvisited_neighbors: # Choose a random unvisited neighbor (next_r, next_c), direction = random.choice(unvisited_neighbors) # Remove the wall between the current cell and the chosen neighbor if direction == 'cw': self.grid[current_r][current_c]['cw'] = False elif direction == 'ccw': self.grid[next_r][next_c]['cw'] = False elif direction == 'out': self.grid[current_r][current_c]['out'] = False elif direction == 'in': self.grid[next_r][next_c]['out'] = False self.solution[(next_r, next_c)] = (current_r, current_c) visited.add((next_r, next_c)) stack.append((next_r, next_c)) else: # Backtrack if there are no unvisited neighbors stack.pop() # Create an entrance and an exit self.grid[0][0]['cw'] = False # Entrance at the center self.grid[self.levels-1][0]['out'] = False # Exit at the outer edge def draw(self, canvas): """ Draws the entire maze on the provided tkinter canvas. """ canvas.delete("all") width = int(canvas.cget("width")) height = int(canvas.cget("height")) center_x, center_y = width / 2, height / 2 # The first ring is a gap, so we start drawing from an offset ring_thickness = (min(width, height) / 2) / (self.levels + 1) # Iterate through each cell to draw its walls for r, level in enumerate(self.grid): sectors = len(level) angle_step = 360 / sectors for c, cell in enumerate(level): radius_inner = (r + 1) * ring_thickness radius_outer = (r + 2) * ring_thickness angle_start = c * angle_step angle_end = (c + 1) * angle_step # Draw the outward wall (an arc) if cell['out']: canvas.create_arc( center_x - radius_outer, center_y - radius_outer, center_x + radius_outer, center_y + radius_outer, start=angle_start, extent=angle_step, style=tk.ARC, outline=WALL_COLOR, width=WALL_WIDTH ) # Draw the clockwise wall (a radial line) if cell['cw']: x1 = center_x + radius_inner * math.cos(math.radians(angle_end)) y1 = center_y + radius_inner * math.sin(math.radians(angle_end)) x2 = center_x + radius_outer * math.cos(math.radians(angle_end)) y2 = center_y + radius_outer * math.sin(math.radians(angle_end)) canvas.create_line(x1, y1, x2, y2, fill=WALL_COLOR, width=WALL_WIDTH) def generate_and_draw_maze(): """ Function to be called by the button to generate and draw a new maze. """ maze = CircularMaze(MAZE_LEVELS) maze.generate() maze.draw(canvas) # --- Main Application Setup --- if __name__ == "__main__": root = tk.Tk() root.title("Circular Maze Generator") root.configure(bg=BACKGROUND_COLOR) # --- UI Frame --- ui_frame = tk.Frame(root, bg=BACKGROUND_COLOR) ui_frame.pack(pady=10) title_label = tk.Label(ui_frame, text="Circular Maze Generator", font=("Helvetica", 16), bg=BACKGROUND_COLOR) title_label.pack(pady=(0, 10)) generate_button = tk.Button( ui_frame, text="Generate New Maze", font=("Helvetica", 12), command=generate_and_draw_maze ) generate_button.pack() # --- Canvas for Maze --- canvas_frame = tk.Frame(root) canvas_frame.pack(expand=True, fill=tk.BOTH, padx=20, pady=20) canvas = tk.Canvas( canvas_frame, width=CANVAS_SIZE, height=CANVAS_SIZE, bg='white', highlightthickness=0 ) canvas.pack(expand=True) # Generate the first maze on startup generate_and_draw_maze() root.mainloop()
fail_circlemaze_3.py
import tkinter as tk import math import random # Dimensions of the polar maze. NUM_RINGS = 10 # Number of concentric circles (increasing this creates a deeper maze) NUM_SECTORS = 24 # Number of angular divisions (must be >= 4 for a meaningful maze) CANVAS_SIZE = 600 # Width/Height of the drawing canvas in pixels MARGIN = 20 # Padding around the circular maze # Each cell is identified by (ring, sector) # We'll store whether each of its four "walls" exist: # 'in' -> wall between this ring and the ring below (toward center) # 'out' -> wall between this ring and the ring above (toward outer edge) # 'left' / 'right' -> angular boundaries def generate_polar_maze(rings, sectors): # Initialize all walls as present and mark cells as unvisited. maze = {} for r in range(rings): for s in range(sectors): maze[(r, s)] = { "visited": False, "in": True, "out": True, "left": True, "right": True } def neighbors(cell): r, s = cell nbs = [] # inward neighbor if r > 0: nbs.append(((r - 1), s, "in")) # outward neighbor if r < rings - 1: nbs.append(((r + 1), s, "out")) # left/clockwise neighbor nbs.append((r, (s - 1) % sectors, "left")) # right / counterclockwise neighbor nbs.append((r, (s + 1) % sectors, "right")) return nbs # Carve maze using DFS stack = [(0, 0)] maze[(0, 0)]["visited"] = True while stack: cell = stack[-1] unvisited = [] for nb_r, nb_s, direction in neighbors(cell): if not maze[(nb_r, nb_s)]["visited"]: unvisited.append((nb_r, nb_s, direction)) if not unvisited: stack.pop() else: nb_r, nb_s, direction = random.choice(unvisited) # Knock down wall in the current cell and corresponding wall in neighbor if direction == "in": maze[(cell[0], cell[1])]["in"] = False maze[(nb_r, nb_s)]["out"] = False elif direction == "out": maze[(cell[0], cell[1])]["out"] = False maze[(nb_r, nb_s)]["in"] = False elif direction == "left": maze[(cell[0], cell[1])]["left"] = False maze[(nb_r, nb_s)]["right"] = False else: # right maze[(cell[0], cell[1])]["right"] = False maze[(nb_r, nb_s)]["left"] = False maze[(nb_r, nb_s)]["visited"] = True stack.append((nb_r, nb_s)) return maze def draw_polar_maze(canvas, maze, rings, sectors): center = CANVAS_SIZE // 2 radius_step = (CANVAS_SIZE // 2 - MARGIN) / rings for (r, s), walls in maze.items(): r_inner = r * radius_step r_outer = (r + 1) * radius_step start_angle = (360 / sectors) * s end_angle = start_angle + (360 / sectors) # Inward wall if walls["in"]: canvas.create_arc( center - r_inner, center - r_inner, center + r_inner, center + r_inner, start=start_angle, extent=(360 / sectors), style=tk.ARC, width=2 ) # Outward wall if walls["out"]: canvas.create_arc( center - r_outer, center - r_outer, center + r_outer, center + r_outer, start=start_angle, extent=(360 / sectors), style=tk.ARC, width=2 ) # Left (clockwise) wall if walls["left"]: angle_rad = math.radians(start_angle) x0 = center + r_inner * math.cos(angle_rad) y0 = center - r_inner * math.sin(angle_rad) x1 = center + r_outer * math.cos(angle_rad) y1 = center - r_outer * math.sin(angle_rad) canvas.create_line(x0, y0, x1, y1, width=2) # Right (counterclockwise) wall if walls["right"]: angle_rad = math.radians(end_angle) x0 = center + r_inner * math.cos(angle_rad) y0 = center - r_inner * math.sin(angle_rad) x1 = center + r_outer * math.cos(angle_rad) y1 = center - r_outer * math.sin(angle_rad) canvas.create_line(x0, y0, x1, y1, width=2) def main(): root = tk.Tk() root.title("Circular Maze") canvas = tk.Canvas(root, width=CANVAS_SIZE, height=CANVAS_SIZE, bg="white") canvas.pack() maze = generate_polar_maze(NUM_RINGS, NUM_SECTORS) draw_polar_maze(canvas, maze, NUM_RINGS, NUM_SECTORS) root.mainloop() if __name__ == "__main__": main()
fail_circlemaze_4.py
import tkinter as tk import math import random # --- Configuration Constants --- CANVAS_SIZE = 800 RINGS = 15 # Number of concentric rings in the maze WALL_COLOR = "#1a237e" PATH_COLOR = "#e8eaf6" PLAYER_COLOR = "#ff5252" WIN_COLOR = "#4caf50" WALL_THICKNESS = 2 class CircularMaze: """ This class handles the generation and drawing of the circular maze structure. It uses a recursive backtracking algorithm adapted for a polar grid. """ def __init__(self, rings): self.rings = rings self.grid = [] self._setup_grid() self._generate_maze() def _setup_grid(self): """Initializes the grid data structure for the maze.""" # The center is a single cell, ring 0 self.grid.append([{'N': True, 'E': True, 'S': True, 'W': True, 'visited': False}]) for r in range(1, self.rings + 1): # The number of cells in a ring increases as it gets larger num_cells = self._get_cells_in_ring(r) ring_cells = [{'N': True, 'E': True, 'S': True, 'W': True, 'visited': False} for _ in range(num_cells)] self.grid.append(ring_cells) def _get_cells_in_ring(self, r): """Calculates the number of cells for a given ring.""" # A simple formula to increase cells in outer rings return int(r * 4 * 1.5) if r > 0 else 1 def _generate_maze(self): """ Generates the maze paths using a randomized depth-first search (recursive backtracking) algorithm. """ stack = [(0, 0)] # Start at the center cell (ring 0, cell 0) self.grid[0][0]['visited'] = True while stack: r, c = stack[-1] neighbors = self._get_unvisited_neighbors(r, c) if neighbors: nr, nc, direction = random.choice(neighbors) # Carve a path between the current cell and the neighbor self._remove_wall((r, c), (nr, nc), direction) self.grid[nr][nc]['visited'] = True stack.append((nr, nc)) else: # Backtrack stack.pop() # Create an exit at the top of the outermost ring exit_cell_index = len(self.grid[self.rings]) // 4 self.grid[self.rings][exit_cell_index]['N'] = False def _get_unvisited_neighbors(self, r, c): """Finds all valid, unvisited neighbors for a given cell.""" neighbors = [] num_cells_current = self._get_cells_in_ring(r) # Clockwise neighbor (East) east_c = (c + 1) % num_cells_current if not self.grid[r][east_c]['visited']: neighbors.append((r, east_c, 'E')) # Counter-clockwise neighbor (West) west_c = (c - 1 + num_cells_current) % num_cells_current if not self.grid[r][west_c]['visited']: neighbors.append((r, west_c, 'W')) # Outward neighbor (South) if r + 1 <= self.rings: num_cells_outer = self._get_cells_in_ring(r + 1) # Find the corresponding cell in the outer ring ratio = num_cells_outer / num_cells_current for i in range(math.floor(ratio * c), math.floor(ratio * (c + 1))): if not self.grid[r + 1][i]['visited']: neighbors.append((r + 1, i, 'S')) # Inward neighbor (North) if r - 1 >= 0: num_cells_inner = self._get_cells_in_ring(r - 1) # Find the corresponding cell in the inner ring ratio = num_cells_current / num_cells_inner north_c = int(c // ratio) if not self.grid[r - 1][north_c]['visited']: neighbors.append((r - 1, north_c, 'N')) return neighbors def _remove_wall(self, cell1, cell2, direction): """Removes the wall between two adjacent cells.""" r1, c1 = cell1 r2, c2 = cell2 if direction == 'E': # Moving Clockwise self.grid[r1][c1]['E'] = False self.grid[r2][c2]['W'] = False elif direction == 'W': # Moving Counter-Clockwise self.grid[r1][c1]['W'] = False self.grid[r2][c2]['E'] = False elif direction == 'S': # Moving Outward self.grid[r1][c1]['S'] = False self.grid[r2][c2]['N'] = False elif direction == 'N': # Moving Inward self.grid[r1][c1]['N'] = False self.grid[r2][c2]['S'] = False def draw(self, canvas): """Draws the entire maze on the tkinter canvas.""" canvas.delete("all") canvas.create_rectangle(0, 0, CANVAS_SIZE, CANVAS_SIZE, fill=PATH_COLOR, outline="") center_x, center_y = CANVAS_SIZE / 2, CANVAS_SIZE / 2 ring_width = (CANVAS_SIZE / 2) / (self.rings + 1) # Draw walls for each cell for r in range(1, self.rings + 1): num_cells = self._get_cells_in_ring(r) radius_inner = r * ring_width radius_outer = (r + 1) * ring_width for c in range(num_cells): angle_start = (c / num_cells) * 360 angle_extent = (1 / num_cells) * 360 # Draw clockwise wall (radial line) if self.grid[r][c]['E']: x1 = center_x + radius_inner * math.cos(math.radians(angle_start + angle_extent)) y1 = center_y + radius_inner * math.sin(math.radians(angle_start + angle_extent)) x2 = center_x + radius_outer * math.cos(math.radians(angle_start + angle_extent)) y2 = center_y + radius_outer * math.sin(math.radians(angle_start + angle_extent)) canvas.create_line(x1, y1, x2, y2, fill=WALL_COLOR, width=WALL_THICKNESS) # Draw outward wall (arc) if self.grid[r][c]['S']: # Tkinter's arc bounding box is defined by top-left and bottom-right corners x0 = center_x - radius_outer y0 = center_y - radius_outer x1 = center_x + radius_outer y1 = center_y + radius_outer canvas.create_arc(x0, y0, x1, y1, start=angle_start, extent=angle_extent, style=tk.ARC, outline=WALL_COLOR, width=WALL_THICKNESS) # Draw the outermost boundary final_radius = (self.rings + 1) * ring_width x0 = center_x - final_radius y0 = center_y - final_radius x1 = center_x + final_radius y1 = center_y + final_radius exit_cell_index = len(self.grid[self.rings]) // 4 num_cells_outer = self._get_cells_in_ring(self.rings) angle_start = (exit_cell_index / num_cells_outer) * 360 angle_extent = (1 / num_cells_outer) * 360 # Draw the boundary in two parts to leave an opening for the exit canvas.create_arc(x0, y0, x1, y1, start=angle_start + angle_extent, extent=360-angle_extent, style=tk.ARC, outline=WALL_COLOR, width=WALL_THICKNESS * 2) class Player: """Represents the player, handling movement, drawing, and win conditions.""" def __init__(self, canvas, maze): self.canvas = canvas self.maze = maze self.r = 0 # Start at ring 0 self.c = 0 # Start at cell 0 self.player_obj = None self.has_won = False self.draw() def get_cell_center(self): """Calculates the pixel coordinates for the center of the player's current cell.""" center_x, center_y = CANVAS_SIZE / 2, CANVAS_SIZE / 2 ring_width = (CANVAS_SIZE / 2) / (self.maze.rings + 1) if self.r == 0: return center_x, center_y num_cells = self.maze._get_cells_in_ring(self.r) # Angle to the middle of the cell angle = ((self.c + 0.5) / num_cells) * 2 * math.pi # Radius to the middle of the ring radius = (self.r + 0.5) * ring_width x = center_x + radius * math.cos(angle) y = center_y + radius * math.sin(angle) return x, y def draw(self): """Draws or moves the player's icon on the canvas.""" if self.player_obj: self.canvas.delete(self.player_obj) x, y = self.get_cell_center() ring_width = (CANVAS_SIZE / 2) / (self.maze.rings + 1) # Scale player size with the ring width player_radius = ring_width / 4 self.player_obj = self.canvas.create_oval( x - player_radius, y - player_radius, x + player_radius, y + player_radius, fill=PLAYER_COLOR, outline="" ) def move(self, event): """Handles key press events for player movement.""" if self.has_won: return direction = event.keysym current_cell = self.maze.grid[self.r][self.c] moved = False # --- Movement Logic --- if direction == "Up": # Move Inward if not current_cell['N']: num_cells_current = self.maze._get_cells_in_ring(self.r) num_cells_inner = self.maze._get_cells_in_ring(self.r - 1) ratio = num_cells_current / num_cells_inner self.r -= 1 self.c = int(self.c // ratio) moved = True elif direction == "Down": # Move Outward if not current_cell['S']: num_cells_current = self.maze._get_cells_in_ring(self.r) num_cells_outer = self.maze._get_cells_in_ring(self.r + 1) ratio = num_cells_outer / num_cells_current # This is a simplification; find a cell that shares a border # For this generation, any cell within the ratio range is a valid path self.r += 1 self.c = int(self.c * ratio) + random.randint(0, int(ratio-1)) moved = True elif direction == "Left": # Move Counter-Clockwise if not current_cell['W']: num_cells = self.maze._get_cells_in_ring(self.r) self.c = (self.c - 1 + num_cells) % num_cells moved = True elif direction == "Right": # Move Clockwise if not current_cell['E']: num_cells = self.maze._get_cells_in_ring(self.r) self.c = (self.c + 1) % num_cells moved = True if moved: self.draw() self.check_win() def check_win(self): """Checks if the player has reached the exit and displays a win message.""" exit_cell_index = len(self.maze.grid[self.maze.rings]) // 4 if self.r == self.maze.rings and self.c == exit_cell_index: self.has_won = True self.canvas.create_text( CANVAS_SIZE / 2, CANVAS_SIZE / 2, text="You Win!", font=("Helvetica", 60, "bold"), fill=WIN_COLOR ) def main(): """Main function to set up the game window and start the application.""" root = tk.Tk() root.title("Circular Maze") canvas = tk.Canvas(root, width=CANVAS_SIZE, height=CANVAS_SIZE, bg=PATH_COLOR) canvas.pack() # Generate and draw the maze maze = CircularMaze(RINGS) maze.draw(canvas) # Create the player player = Player(canvas, maze) # Bind arrow keys to player movement root.bind("<KeyPress>", player.move) # Center the window root.update_idletasks() width = root.winfo_width() height = root.winfo_height() x = (root.winfo_screenwidth() // 2) - (width // 2) y = (root.winfo_screenheight() // 2) - (height // 2) root.geometry('{}x{}+{}+{}'.format(width, height, x, y)) root.mainloop() if __name__ == "__main__": main()
Интерактивные китайские счёты
Промпт:
Создай программу на Python, которая использует только tkinter и стандартную библиотеку, чтобы сделать интерактивные счёты. Пользователь может кликать по косточкам, чтобы сдвигать их. Должны быть ряды “небесных” и “земных” косточек. Число, которое представляют счёты в текущей конфигурации, должно отображаться внизу окна.
Результат: Программы от LLM рисовали счёты, но поведение сдвига косточек всякий раз оказывалось сломанным. При клике сдвигались не те косточки, а вернуться в исходное положение они не могли. Отображаемое число полностью расходилось с реальным и иногда даже становилось отрицательным.

fail_abacus_1.py
import tkinter as tk from tkinter import ttk import math class Abacus: def __init__(self, root): self.root = root self.root.title("Interactive Abacus") self.root.geometry("800x600") self.root.configure(bg='#8B4513') # Abacus configuration self.num_columns = 10 # Number of digit columns self.heaven_beads_per_column = 2 # Upper beads (worth 5 each) self.earth_beads_per_column = 5 # Lower beads (worth 1 each) # Visual settings self.bead_radius = 15 self.column_width = 70 self.heaven_section_height = 120 self.earth_section_height = 180 self.crossbar_height = 10 # Data structure to track bead positions # True = bead is "active" (counting), False = "inactive" self.heaven_beads = [[False] * self.heaven_beads_per_column for _ in range(self.num_columns)] self.earth_beads = [[False] * self.earth_beads_per_column for _ in range(self.num_columns)] self.setup_ui() self.draw_abacus() self.update_display() def setup_ui(self): # Main frame self.main_frame = tk.Frame(self.root, bg='#8B4513') self.main_frame.pack(expand=True, fill='both', padx=20, pady=20) # Canvas for abacus canvas_width = self.num_columns * self.column_width + 40 canvas_height = self.heaven_section_height + self.earth_section_height + self.crossbar_height + 60 self.canvas = tk.Canvas( self.main_frame, width=canvas_width, height=canvas_height, bg='#D2691E', highlightthickness=2, highlightbackground='#654321' ) self.canvas.pack(pady=10) # Value display self.value_label = tk.Label( self.main_frame, text="Value: 0", font=('Arial', 18, 'bold'), bg='#8B4513', fg='white' ) self.value_label.pack(pady=10) # Reset button self.reset_button = tk.Button( self.main_frame, text="Reset Abacus", command=self.reset_abacus, font=('Arial', 12), bg='#CD853F', fg='black' ) self.reset_button.pack(pady=5) # Instructions instructions = tk.Label( self.main_frame, text="Click on beads to slide them. Heaven beads (top) = 5, Earth beads (bottom) = 1", font=('Arial', 10), bg='#8B4513', fg='lightgray', wraplength=600 ) instructions.pack(pady=5) def draw_abacus(self): self.canvas.delete("all") # Draw frame frame_margin = 20 frame_width = self.num_columns * self.column_width frame_height = self.heaven_section_height + self.earth_section_height + self.crossbar_height self.canvas.create_rectangle( frame_margin, frame_margin, frame_margin + frame_width, frame_margin + frame_height, fill='#8B4513', outline='#654321', width=3 ) # Draw crossbar (separates heaven and earth beads) crossbar_y = frame_margin + self.heaven_section_height self.canvas.create_rectangle( frame_margin, crossbar_y, frame_margin + frame_width, crossbar_y + self.crossbar_height, fill='#654321', outline='#654321' ) # Draw vertical rods and beads for each column for col in range(self.num_columns): self.draw_column(col, frame_margin) # Draw column labels (place values) for col in range(self.num_columns): x = frame_margin + col * self.column_width + self.column_width // 2 place_value = 10 ** (self.num_columns - 1 - col) if place_value >= 1000000: label = f"{place_value // 1000000}M" elif place_value >= 1000: label = f"{place_value // 1000}K" else: label = str(place_value) self.canvas.create_text( x, frame_margin - 10, text=label, font=('Arial', 8), fill='black' ) def draw_column(self, col, frame_margin): # Calculate column position col_x = frame_margin + col * self.column_width + self.column_width // 2 # Draw vertical rod rod_top = frame_margin + 5 rod_bottom = frame_margin + self.heaven_section_height + self.earth_section_height + self.crossbar_height - 5 self.canvas.create_line( col_x, rod_top, col_x, rod_bottom, fill='#2F4F4F', width=4 ) # Draw heaven beads (upper section) heaven_start_y = frame_margin + 10 for bead_idx in range(self.heaven_beads_per_column): if self.heaven_beads[col][bead_idx]: # Active (counting) y = heaven_start_y + self.heaven_section_height - 40 - bead_idx * 35 else: # Inactive y = heaven_start_y + bead_idx * 35 bead_id = self.draw_bead(col_x, y, 'heaven', col, bead_idx) # Draw earth beads (lower section) earth_start_y = frame_margin + self.heaven_section_height + self.crossbar_height + 10 for bead_idx in range(self.earth_beads_per_column): if self.earth_beads[col][bead_idx]: # Active (counting) y = earth_start_y + bead_idx * 32 else: # Inactive y = earth_start_y + self.earth_section_height - 50 - bead_idx * 32 bead_id = self.draw_bead(col_x, y, 'earth', col, bead_idx) def draw_bead(self, x, y, bead_type, col, bead_idx): # Choose colors based on type and state if bead_type == 'heaven': is_active = self.heaven_beads[col][bead_idx] color = '#FFD700' if is_active else '#FFA500' # Gold when active, orange when inactive else: # earth is_active = self.earth_beads[col][bead_idx] color = '#32CD32' if is_active else '#90EE90' # Green when active, light green when inactive # Draw bead bead_id = self.canvas.create_oval( x - self.bead_radius, y - self.bead_radius, x + self.bead_radius, y + self.bead_radius, fill=color, outline='#654321', width=2, tags=f"{bead_type}_{col}_{bead_idx}" ) # Bind click event self.canvas.tag_bind(bead_id, "<Button-1>", lambda e, t=bead_type, c=col, b=bead_idx: self.toggle_bead(t, c, b)) return bead_id def toggle_bead(self, bead_type, col, bead_idx): """Toggle a bead between active and inactive states""" if bead_type == 'heaven': # For heaven beads, we need to maintain proper order current_state = self.heaven_beads[col][bead_idx] if current_state: # Currently active, deactivate this and all above for i in range(bead_idx, self.heaven_beads_per_column): self.heaven_beads[col][i] = False else: # Currently inactive, activate this and all below for i in range(bead_idx + 1): self.heaven_beads[col][i] = True else: # earth beads # For earth beads, maintain proper order current_state = self.earth_beads[col][bead_idx] if current_state: # Currently active, deactivate this and all above for i in range(bead_idx, self.earth_beads_per_column): self.earth_beads[col][i] = False else: # Currently inactive, activate this and all below for i in range(bead_idx + 1): self.earth_beads[col][i] = True # Redraw and update display self.draw_abacus() self.update_display() def calculate_value(self): """Calculate the total value represented by the abacus""" total = 0 for col in range(self.num_columns): place_value = 10 ** (self.num_columns - 1 - col) # Count active heaven beads (worth 5 each) heaven_count = sum(1 for bead in self.heaven_beads[col] if bead) # Count active earth beads (worth 1 each) earth_count = sum(1 for bead in self.earth_beads[col] if bead) # Add to total digit_value = (heaven_count * 5 + earth_count) * place_value total += digit_value return total def update_display(self): """Update the value display""" value = self.calculate_value() self.value_label.config(text=f"Value: {value:,}") def reset_abacus(self): """Reset all beads to inactive state""" for col in range(self.num_columns): for bead_idx in range(self.heaven_beads_per_column): self.heaven_beads[col][bead_idx] = False for bead_idx in range(self.earth_beads_per_column): self.earth_beads[col][bead_idx] = False self.draw_abacus() self.update_display() def main(): root = tk.Tk() abacus = Abacus(root) root.mainloop() if __name__ == "__main__": main()
fail_abacus_2.py
import tkinter as tk # --- Constants --- # You can adjust these to change the abacus's appearance NUM_RODS = 13 BEAD_COLOR = "#B22222" # Firebrick ROD_COLOR = "#8B4513" # SaddleBrown FRAME_COLOR = "#8B4513" BAR_COLOR = "#A0522D" # Sienna BG_COLOR = "#F5DEB3" # Wheat BEAD_WIDTH = 50 BEAD_HEIGHT = 25 ROD_SPACING = 60 FRAME_THICKNESS = 20 BAR_THICKNESS = 10 # --- Main Application Class --- class AbacusApp: """ An interactive abacus application built with tkinter. """ def __init__(self, root): """Initializes the abacus application.""" self.root = root self.root.title("Interactive Abacus") self.root.resizable(False, False) # Calculate canvas dimensions based on abacus size self.canvas_width = (NUM_RODS + 1) * ROD_SPACING self.canvas_height = 8 * BEAD_HEIGHT + 2 * FRAME_THICKNESS # --- Data Structure --- # Stores the state of the abacus. # For each rod, we store a list: [heaven_bead_active, num_earth_beads_active] # heaven_bead_active: 1 if down (active), 0 if up (inactive) # num_earth_beads_active: 0-4, number of earth beads pushed up (active) self.bead_states = [[0, 0] for _ in range(NUM_RODS)] # --- UI Elements --- self.canvas = tk.Canvas( root, width=self.canvas_width, height=self.canvas_height, bg=BG_COLOR ) self.canvas.pack(pady=10) self.value_label = tk.Label( root, text="0", font=("Arial", 24, "bold"), pady=10 ) self.value_label.pack() # --- Event Binding --- self.canvas.bind("<Button-1>", self.on_canvas_click) # --- Initial Draw --- self.draw_abacus() self.update_value() def draw_abacus(self): """Clears and redraws the entire abacus based on the current state.""" self.canvas.delete("all") self.draw_frame() for i in range(NUM_RODS): self.draw_rod(i) def draw_frame(self): """Draws the outer frame and the central reckoning bar.""" # Outer frame self.canvas.create_rectangle( FRAME_THICKNESS / 2, FRAME_THICKNESS / 2, self.canvas_width - FRAME_THICKNESS / 2, self.canvas_height - FRAME_THICKNESS / 2, width=FRAME_THICKNESS, outline=FRAME_COLOR ) # Reckoning bar (the horizontal bar in the middle) self.bar_y = self.canvas_height / 2 - 2.5 * BEAD_HEIGHT self.canvas.create_rectangle( FRAME_THICKNESS, self.bar_y - BAR_THICKNESS / 2, self.canvas_width - FRAME_THICKNESS, self.bar_y + BAR_THICKNESS / 2, fill=BAR_COLOR, width=0 ) def draw_rod(self, rod_index): """Draws a single rod and its beads based on its state.""" rod_x = (rod_index + 1) * ROD_SPACING # Draw the rod itself self.canvas.create_line( rod_x, FRAME_THICKNESS, rod_x, self.canvas_height - FRAME_THICKNESS, fill=ROD_COLOR, width=2 ) # --- Draw Heaven Bead (value of 5) --- heaven_state = self.bead_states[rod_index][0] if heaven_state == 0: # Inactive (up) y_center = self.bar_y - 1.5 * BEAD_HEIGHT else: # Active (down) y_center = self.bar_y - 0.5 * BEAD_HEIGHT self.draw_bead(rod_x, y_center) # --- Draw Earth Beads (value of 1 each) --- earth_beads_up = self.bead_states[rod_index][1] # Draw active beads (up) for i in range(earth_beads_up): y_center = self.bar_y + (i + 0.5) * BEAD_HEIGHT self.draw_bead(rod_x, y_center) # Draw inactive beads (down) for i in range(4 - earth_beads_up): y_center = self.bar_y + (earth_beads_up + i + 1.5) * BEAD_HEIGHT self.draw_bead(rod_x, y_center) def draw_bead(self, x, y): """Helper function to draw a single bead centered at (x, y).""" self.canvas.create_oval( x - BEAD_WIDTH / 2, y - BEAD_HEIGHT / 2, x + BEAD_WIDTH / 2, y + BEAD_HEIGHT / 2, fill=BEAD_COLOR, width=2, outline="black" ) def on_canvas_click(self, event): """Handles mouse clicks on the canvas to move beads.""" # Determine which rod was clicked rod_index = int((event.x - ROD_SPACING / 2) / ROD_SPACING) if not (0 <= rod_index < NUM_RODS): return # Click was outside the rods # Check if the click was on the heaven bead (above the bar) if event.y < self.bar_y: # Toggle heaven bead state self.bead_states[rod_index][0] = 1 - self.bead_states[rod_index][0] # Check if the click was on the earth beads (below the bar) else: # Determine which bead was clicked based on y-position bead_pos = int((event.y - self.bar_y) / BEAD_HEIGHT) # Find the state of the clicked bead num_up = self.bead_states[rod_index][1] if bead_pos <= num_up: # Clicked on an 'up' bead # Move this bead and all above it down self.bead_states[rod_index][1] = bead_pos - 1 else: # Clicked on a 'down' bead # Move this bead and all below it up self.bead_states[rod_index][1] = bead_pos # Redraw and update the display self.draw_abacus() self.update_value() def update_value(self): """Calculates and displays the number represented by the abacus.""" total_value = 0 for i in range(NUM_RODS): heaven_val = self.bead_states[i][0] * 5 earth_val = self.bead_states[i][1] rod_value = heaven_val + earth_val # Calculate place value (units, tens, hundreds, etc. from right to left) place_value = 10**(NUM_RODS - 1 - i) total_value += rod_value * place_value self.value_label.config(text=f"{total_value:,}") # --- Main Execution --- if __name__ == "__main__": main_window = tk.Tk() app = AbacusApp(main_window) main_window.mainloop()
fail_abacus_3.py
import tkinter as tk # Constants for the abacus layout. NUM_COLUMNS = 6 # number of rods BEAD_RADIUS = 15 ROD_SPACING = 75 HEAVEN_Y = 50 EARTH_START_Y = 150 EARTH_SPACING = 40 HEAVEN_COUNT = 1 EARTH_COUNT = 4 class Bead: def __init__(self, canvas, col, row, is_heaven): self.canvas = canvas self.col = col # which rod this bead belongs to self.row = row # index within its group self.is_heaven = is_heaven x = (col + 1) * ROD_SPACING if is_heaven: y = HEAVEN_Y + row * 2 * BEAD_RADIUS else: y = EARTH_START_Y + row * 2 * BEAD_RADIUS self.x = x self.y = y self.id = canvas.create_oval( x - BEAD_RADIUS, y - BEAD_RADIUS, x + BEAD_RADIUS, y + BEAD_RADIUS, fill="tan", outline="black" ) canvas.tag_bind(self.id, "<Button-1>", self.toggle) def toggle(self, event): """ Slide a bead up or down depending on which group it belongs to. """ if self.is_heaven: # Heaven bead can only move DOWN (towards the bar) or back UP. target = HEAVEN_Y + BEAD_RADIUS*2 if self.y < target: dy = (target - self.y) else: dy = - (target - HEAVEN_Y) else: # Earth beads move upward toward the bar or back down to their start. target = EARTH_START_Y - BEAD_RADIUS*2 if self.y > target: dy = -(self.y - target) else: dy = (EARTH_START_Y - self.y) # Move only this bead self.canvas.move(self.id, 0, dy) self.y += dy update_display() def create_rods(canvas): for c in range(NUM_COLUMNS): x = (c + 1) * ROD_SPACING canvas.create_line(x, HEAVEN_Y - 50, x, EARTH_START_Y + 200, width=4) def get_value(): value = 0 for col in range(NUM_COLUMNS): # Check heaven bead heaven_bead = beads[(col, 0, True)] if heaven_bead.y > HEAVEN_Y + BEAD_RADIUS: value += 5 * (10**(NUM_COLUMNS - 1 - col)) # Count earth beads that have moved up earth_count = 0 for i in range(EARTH_COUNT): b = beads[(col, i, False)] if b.y < EARTH_START_Y + i*2*BEAD_RADIUS: earth_count += 1 value += earth_count * (10**(NUM_COLUMNS - 1 - col)) return value def update_display(): val = get_value() label_var.set(f"Value: {val}") root = tk.Tk() root.title("Abacus") canvas = tk.Canvas(root, width=(NUM_COLUMNS+1)*ROD_SPACING, height=350, bg="white") canvas.pack() # Draw the separating bar canvas.create_line(0, EARTH_START_Y - 30, (NUM_COLUMNS+1)*ROD_SPACING, EARTH_START_Y - 30, width=6) create_rods(canvas) # Create beads and store them in a dictionary beads = {} for col in range(NUM_COLUMNS): # heaven beads for r in range(HEAVEN_COUNT): bead = Bead(canvas, col, r, True) beads[(col, r, True)] = bead # earth beads for r in range(EARTH_COUNT): bead = Bead(canvas, col, r, False) beads[(col, r, False)] = bead # Value display label_var = tk.StringVar() label_var.set("Value: 0") label = tk.Label(root, textvariable=label_var, font=("Helvetica", 14)) label.pack(pady=5) root.mainloop()
Симулятор кодового замка
Промпт:
Создай программу на Python, которая использует только tkinter и стандартную библиотеку. Это симулятор кодового замка. Программа показывает замок с диском и позволяет пользователю вращать диск, двигая мышью. Комбинация отображается сверху. Если пользователь правильно ввёл комбинацию, при клике по защёлке она должна открыться. Окно должно показывать инструкции по использованию приложения для открытия замка.
Результат: Хотя программы рисовали примитивный кодовый замок и диск с цифрами, вращение диска работало как попало. Цифры на диске всегда оставались вертикальными при вращении (я и не требовал корректного поворота). Ввести комбинацию было невозможно, и даже при корректном вводе клик по защёлке ничего не делал.

fail_combo_1.py
import tkinter as tk import math # Configuration COMBINATION = (22, 7, 15) # (clockwise, counter-clockwise, clockwise) class CombinationLockApp: def __init__(self, root): self.root = root self.root.title("Combination Lock") self.canvas = tk.Canvas(root, width=300, height=350, bg="white") self.canvas.pack() # Variables self.angle = 0.0 self.last_x = None self.entered = [] self.turn_count = 0 self.is_unlocked = False # Draw latch (simple rectangle) self.latch = self.canvas.create_rectangle(120, 20, 180, 60, fill="gray") self.canvas.tag_bind(self.latch, "<Button-1>", self.try_open_latch) # Draw dial *first* so that text is layered on top self.dial_center = (150, 200) self.dial = self.canvas.create_oval(50, 100, 250, 300, fill="lightgray") # Combination display self.combo_text = self.canvas.create_text( 150, 90, text=f"Combination: {COMBINATION}", font=("Arial", 12), fill="black" ) # Draw tick marks and numbers self.draw_ticks() # Bind spin handlers self.canvas.bind("<ButtonPress-1>", self.start_spin) self.canvas.bind("<B1-Motion>", self.spin_dial) def draw_ticks(self): self.ticks = [] r = 100 for n in range(40): # 0–39 angle = math.radians(n * 9) x = self.dial_center[0] + r * math.sin(angle) y = self.dial_center[1] - r * math.cos(angle) tick = self.canvas.create_text( x, y, text=str(n), font=("Arial", 8), fill="black" ) self.ticks.append((tick, n)) def start_spin(self, event): self.last_x = event.x def spin_dial(self, event): if self.is_unlocked: return delta = event.x - self.last_x self.last_x = event.x self.angle += delta * 0.8 self.update_dial_display(delta) def update_dial_display(self, delta): for tick, _ in self.ticks: self.canvas.delete(tick) self.ticks.clear() r = 100 for n in range(40): deg = n * 9 + self.angle x = self.dial_center[0] + r * math.sin(math.radians(deg)) y = self.dial_center[1] - r * math.cos(math.radians(deg)) tick = self.canvas.create_text( x, y, text=str(n), font=("Arial", 8), fill="black" ) self.ticks.append((tick, n)) current_number = int(((-self.angle) % 360) / 9) % 40 direction = -1 if delta > 0 else 1 if not self.entered or self.entered[-1][1] != direction: self.turn_count += 1 self.entered.append((current_number, direction)) if self.turn_count > 3: self.entered = self.entered[-3:] self.turn_count = 3 def try_open_latch(self, event): if self.is_unlocked: return numbers = [turn[0] for turn in self.entered[-3:]] if tuple(numbers) == COMBINATION: self.is_unlocked = True self.canvas.itemconfig(self.latch, fill="green") self.canvas.itemconfig(self.combo_text, text="Unlocked!", fill="green") else: self.entered.clear() self.turn_count = 0 self.canvas.itemconfig(self.combo_text, text=f"Combination: {COMBINATION}", fill="black") if __name__ == "__main__": root = tk.Tk() CombinationLockApp(root) root.mainloop()
fail_combo_2.py
import tkinter as tk import math class CombinationLock: def __init__(self, root): self.root = root self.root.title("Combination Lock Simulator") self.root.geometry("500x600") self.root.configure(bg='#2c3e50') # Lock settings self.combination = [15, 35, 8] # The correct combination self.current_sequence = [] self.dial_angle = 0 # Current angle of the dial self.is_dragging = False self.last_mouse_angle = 0 self.latch_open = False # Colors self.bg_color = '#2c3e50' self.dial_color = '#34495e' self.number_color = '#ecf0f1' self.pointer_color = '#e74c3c' self.latch_color = '#95a5a6' self.open_latch_color = '#27ae60' self.setup_ui() def setup_ui(self): # Title and combination display title_frame = tk.Frame(self.root, bg=self.bg_color) title_frame.pack(pady=20) tk.Label(title_frame, text="Combination Lock", font=('Arial', 20, 'bold'), fg=self.number_color, bg=self.bg_color).pack() tk.Label(title_frame, text=f"Combination: {'-'.join(map(str, self.combination))}", font=('Arial', 14), fg='#f39c12', bg=self.bg_color).pack(pady=5) # Current sequence display self.sequence_label = tk.Label(title_frame, text="Entered: []", font=('Arial', 12), fg=self.number_color, bg=self.bg_color) self.sequence_label.pack(pady=5) # Instructions instructions = tk.Label(title_frame, text="Drag the dial to enter numbers, then click the latch to open", font=('Arial', 10), fg='#bdc3c7', bg=self.bg_color) instructions.pack(pady=5) # Main canvas for the lock self.canvas = tk.Canvas(self.root, width=400, height=400, bg=self.bg_color, highlightthickness=0) self.canvas.pack(pady=20) # Reset button reset_btn = tk.Button(self.root, text="Reset", command=self.reset_lock, font=('Arial', 12), bg='#e67e22', fg='white', activebackground='#d35400', relief='flat', pady=5) reset_btn.pack(pady=10) # Bind mouse events self.canvas.bind("<Button-1>", self.on_mouse_down) self.canvas.bind("<B1-Motion>", self.on_mouse_drag) self.canvas.bind("<ButtonRelease-1>", self.on_mouse_up) self.draw_lock() def draw_lock(self): self.canvas.delete("all") center_x, center_y = 200, 200 dial_radius = 120 # Draw outer ring of lock self.canvas.create_oval(center_x - dial_radius - 20, center_y - dial_radius - 20, center_x + dial_radius + 20, center_y + dial_radius + 20, fill='#34495e', outline='#2c3e50', width=3) # Draw main dial self.canvas.create_oval(center_x - dial_radius, center_y - dial_radius, center_x + dial_radius, center_y + dial_radius, fill=self.dial_color, outline='#2c3e50', width=2) # Draw numbers around the dial for i in range(40): # 0-39 numbers angle = math.radians(i * 9 - self.dial_angle) # 9 degrees per number number_radius = dial_radius - 25 x = center_x + number_radius * math.cos(angle) y = center_y + number_radius * math.sin(angle) # Highlight every 5th number if i % 5 == 0: font_size = 12 color = '#f39c12' else: font_size = 10 color = self.number_color self.canvas.create_text(x, y, text=str(i), fill=color, font=('Arial', font_size, 'bold')) # Draw center hub self.canvas.create_oval(center_x - 15, center_y - 15, center_x + 15, center_y + 15, fill='#2c3e50', outline='#34495e', width=2) # Draw pointer at top (fixed position) pointer_y = center_y - dial_radius - 35 self.canvas.create_polygon(center_x, pointer_y, center_x - 8, pointer_y + 15, center_x + 8, pointer_y + 15, fill=self.pointer_color, outline='#c0392b', width=2) # Draw latch latch_color = self.open_latch_color if self.latch_open else self.latch_color latch_y = center_y + dial_radius + 40 if self.latch_open: # Draw open latch (moved down) self.canvas.create_rectangle(center_x - 20, latch_y + 10, center_x + 20, latch_y + 30, fill=latch_color, outline='#27ae60', width=2, tags="latch") self.canvas.create_text(center_x, latch_y + 20, text="OPEN", fill='white', font=('Arial', 8, 'bold')) else: # Draw closed latch self.canvas.create_rectangle(center_x - 20, latch_y, center_x + 20, latch_y + 20, fill=latch_color, outline='#7f8c8d', width=2, tags="latch") self.canvas.create_text(center_x, latch_y + 10, text="PUSH", fill='white', font=('Arial', 8, 'bold')) def get_mouse_angle(self, event): center_x, center_y = 200, 200 dx = event.x - center_x dy = event.y - center_y return math.degrees(math.atan2(dy, dx)) def on_mouse_down(self, event): # Check if clicking on latch if self.canvas.find_closest(event.x, event.y)[0] in self.canvas.find_withtag("latch"): self.try_open_latch() return # Check if clicking on dial area center_x, center_y = 200, 200 distance = math.sqrt((event.x - center_x)**2 + (event.y - center_y)**2) if distance <= 120: # Within dial radius self.is_dragging = True self.last_mouse_angle = self.get_mouse_angle(event) def on_mouse_drag(self, event): if not self.is_dragging: return current_angle = self.get_mouse_angle(event) angle_diff = current_angle - self.last_mouse_angle # Handle angle wrap-around if angle_diff > 180: angle_diff -= 360 elif angle_diff < -180: angle_diff += 360 self.dial_angle += angle_diff self.dial_angle = self.dial_angle % 360 self.last_mouse_angle = current_angle self.draw_lock() def on_mouse_up(self, event): if self.is_dragging: self.is_dragging = False # Record the number the pointer is pointing to self.record_current_number() def record_current_number(self): # Calculate which number the pointer is currently pointing to # The pointer is at the top, so we need to find which number is at angle 270 degrees (top) pointer_angle = 270 # Top position adjusted_angle = (pointer_angle + self.dial_angle) % 360 # Each number is 9 degrees apart number = int((adjusted_angle / 9) + 0.5) % 40 self.current_sequence.append(number) # Keep only the last 3 numbers (length of combination) if len(self.current_sequence) > len(self.combination): self.current_sequence = self.current_sequence[-len(self.combination):] # Update display self.sequence_label.config(text=f"Entered: {self.current_sequence}") def try_open_latch(self): if len(self.current_sequence) == len(self.combination): if self.current_sequence == self.combination: self.latch_open = True self.sequence_label.config(text="🎉 UNLOCKED! 🎉", fg='#27ae60') else: self.sequence_label.config(text="⌠Wrong combination!", fg='#e74c3c') # Reset after wrong attempt self.root.after(1500, self.reset_sequence) else: self.sequence_label.config(text="Enter complete combination first!", fg='#f39c12') self.draw_lock() def reset_sequence(self): self.current_sequence = [] self.sequence_label.config(text="Entered: []", fg=self.number_color) def reset_lock(self): self.current_sequence = [] self.dial_angle = 0 self.latch_open = False self.sequence_label.config(text="Entered: []", fg=self.number_color) self.draw_lock() def main(): root = tk.Tk() app = CombinationLock(root) root.mainloop() if __name__ == "__main__": main()
fail_combo_3.py
import tkinter as tk import math # Configuration COMBINATION = (22, 7, 15) # (clockwise, counter-clockwise, clockwise) class CombinationLockApp: def __init__(self, root): self.root = root self.root.title("Combination Lock") self.canvas = tk.Canvas(root, width=300, height=350, bg="white") self.canvas.pack() # Variables self.angle = 0.0 self.last_x = None self.entered = [] self.turn_count = 0 self.is_unlocked = False # Draw latch (simple rectangle) self.latch = self.canvas.create_rectangle(120, 20, 180, 60, fill="gray") self.canvas.tag_bind(self.latch, "<Button-1>", self.try_open_latch) # Combination display self.combo_text = self.canvas.create_text(150, 90, text=f"Combination: {COMBINATION}", font=("Arial", 12)) # Draw dial self.dial_center = (150, 200) self.dial = self.canvas.create_oval(50, 100, 250, 300, fill="lightgray") self.canvas.bind("<ButtonPress-1>", self.start_spin) self.canvas.bind("<B1-Motion>", self.spin_dial) # Draw tick marks and numbers self.draw_ticks() def draw_ticks(self): self.ticks = [] r = 100 for n in range(40): # standard 0-39 dial angle = math.radians(n * 9) # 360/40 = 9 degrees per number x = self.dial_center[0] + r*math.sin(angle) y = self.dial_center[1] - r*math.cos(angle) tick = self.canvas.create_text(x, y, text=str(n), font=("Arial", 8)) self.ticks.append((tick, n)) def start_spin(self, event): self.last_x = event.x def spin_dial(self, event): if self.is_unlocked: # dial no longer spins return delta = event.x - self.last_x self.last_x = event.x # Rotate dial self.angle += delta * 0.8 # speed factor self.update_dial_display(delta) def update_dial_display(self, delta): # Move text numbers. # First erase old for tick, _ in self.ticks: self.canvas.delete(tick) # Recreate with new angle self.ticks.clear() r = 100 for n in range(40): deg = n * 9 + self.angle x = self.dial_center[0] + r * math.sin(math.radians(deg)) y = self.dial_center[1] - r * math.cos(math.radians(deg)) tick = self.canvas.create_text(x, y, text=str(n), font=("Arial", 8)) self.ticks.append((tick, n)) # Track combination logic current_number = int(((-self.angle) % 360) / 9) % 40 # Detect direction changes (left drag = clockwise, right drag = ccw) direction = -1 if delta > 0 else 1 if not self.entered or self.entered[-1][1] != direction: self.turn_count += 1 self.entered.append((current_number, direction)) if self.turn_count > 3: self.entered = self.entered[-3:] self.turn_count = 3 def try_open_latch(self, event): if self.is_unlocked: return # Extract only the numbers from most recent 3 turns numbers = [turn[0] for turn in self.entered[-3:]] if tuple(numbers) == COMBINATION: self.is_unlocked = True self.canvas.itemconfig(self.latch, fill="green") self.canvas.itemconfig(self.combo_text, text="Unlocked!") else: # Reset for another try self.entered.clear() self.turn_count = 0 self.canvas.itemconfig(self.combo_text, text=f"Combination: {COMBINATION}") if __name__ == "__main__": root = tk.Tk() CombinationLockApp(root) root.mainloop()
Редактор диаграмм родословной
Промпт:
Создай программу на Python, которая использует только tkinter и стандартную библиотеку. Сделай приложение для построения диаграммы семьи. Программа представляет людей квадратами с подписью-именем. Приложение запускается с одним квадратом. По клику на квадрат можно отредактировать имя, добавить супруга, добавить ребёнка, добавить родителя или удалить человека. Диаграмма должна автоматически перерисовываться по мере добавления или удаления людей. Используй стандартные линии диаграммы родословной.
Результат: Полностью нерабочее решение. Окно отображало исходный квадрат с человеком, и в некоторых сгенерированных приложениях мне удавалось отредактировать имя. Но добавление любых связей либо ничего не делало, либо полностью ломало/скрывало существующую диаграмму. Нарисовать второй квадрат так и не получилось ни разу.

fail_familytree_1.py
import tkinter as tk from tkinter import simpledialog, messagebox class Person: def __init__(self, name="Person"): self.name = name self.spouse = None self.parents = [] # up to 2 self.children = [] class FamilyTreeApp(tk.Tk): BOX_W = 80 BOX_H = 40 V_GAP = 50 H_GAP = 40 def __init__(self): super().__init__() self.title("Family Tree") self.canvas = tk.Canvas(self, width=1000, height=700, bg="white") self.canvas.pack(fill="both", expand=True) self.root_person = Person() self.box_items = {} self.canvas.bind("<Button-1>", self.on_click) self.draw_tree() def edit_name(self, person): new_name = simpledialog.askstring("Edit Name", "Enter name:", initialvalue=person.name) if new_name: person.name = new_name self.draw_tree() def add_spouse(self, person): if person.spouse: messagebox.showinfo("Info", "This person already has a spouse.") return person.spouse = Person("Spouse") person.spouse.spouse = person self.draw_tree() def add_child(self, person): child = Person("Child") child.parents = [person] if person.spouse: child.parents.append(person.spouse) for p in child.parents: p.children.append(child) self.draw_tree() def add_parent(self, person): if len(person.parents) >= 2: messagebox.showinfo("Info", "This person already has 2 parents.") return parent = Person("Parent") parent.children.append(person) person.parents.append(parent) self.draw_tree() def delete_person(self, person): if person.spouse: person.spouse.spouse = None for p in person.parents: if person in p.children: p.children.remove(person) for ch in person.children: if person in ch.parents: ch.parents.remove(person) if person is self.root_person: self.root_person = Person() self.draw_tree() def draw_tree(self): self.canvas.delete("all") self.box_items.clear() self.layout_positions = {} # center the tree in the canvas self.update_idletasks() canvas_mid = self.canvas.winfo_width() // 2 self._assign_positions(self.root_person, 0, canvas_mid) self._draw_connections(self.root_person) self._draw_boxes(self.root_person) def _assign_positions(self, person, level, offset): if person in self.layout_positions: return self.layout_positions[person][0] if person.children: child_xs = [] for ch in person.children: child_xs.append(self._assign_positions(ch, level + 1, offset)) offset = child_xs[-1] + self.BOX_W + self.H_GAP center_x = (child_xs[0] + child_xs[-1]) / 2 else: center_x = offset offset += self.BOX_W + self.H_GAP self.layout_positions[person] = (center_x, level) if person.spouse: spouse_x = center_x + self.BOX_W + 10 self.layout_positions[person.spouse] = (spouse_x, level) return center_x def _draw_connections(self, person, drawn=set()): if person.spouse and (person, person.spouse) not in drawn: x, y = self._get_box_center(person) sx, sy = self._get_box_center(person.spouse) self.canvas.create_line(x, y, sx, sy) drawn.add((person, person.spouse)) drawn.add((person.spouse, person)) for ch in person.children: cx, cy = self._get_box_center(ch) px, py = self._get_box_center(person) self.canvas.create_line(px, py + self.BOX_H//2, cx, cy - self.BOX_H//2) if person.spouse: sx, sy = self._get_box_center(person.spouse) self.canvas.create_line(sx, sy + self.BOX_H//2, cx, cy - self.BOX_H//2) self._draw_connections(ch, drawn) def _draw_boxes(self, person, drawn=set()): if person in drawn: return drawn.add(person) x, level = self.layout_positions[person] y = level * (self.BOX_H + self.V_GAP) box = self.canvas.create_rectangle( x, y, x + self.BOX_W, y + self.BOX_H, outline="black", fill="lightyellow" ) text = self.canvas.create_text( x + self.BOX_W/2, y + self.BOX_H/2, text=person.name ) self.box_items[box] = person self.box_items[text] = person if person.spouse: self._draw_boxes(person.spouse, drawn) for ch in person.children: self._draw_boxes(ch, drawn) def _get_box_center(self, person): x, level = self.layout_positions[person] y = level * (self.BOX_H + self.V_GAP) return (x + self.BOX_W/2, y + self.BOX_H/2) def on_click(self, event): items = self.canvas.find_closest(event.x, event.y) if not items: return person = self.box_items.get(items[0]) if person: self.popup_menu(person, event.x_root, event.y_root) def popup_menu(self, person, x, y): menu = tk.Menu(self, tearoff=0) menu.add_command(label="Edit name", command=lambda: self.edit_name(person)) menu.add_command(label="Add spouse", command=lambda: self.add_spouse(person)) menu.add_command(label="Add child", command=lambda: self.add_child(person)) menu.add_command(label="Add parent", command=lambda: self.add_parent(person)) menu.add_command(label="Delete", command=lambda: self.delete_person(person)) menu.tk_popup(x, y) if __name__ == "__main__": app = FamilyTreeApp() app.mainloop()
fail_familytree_2.py
import tkinter as tk from tkinter import messagebox, simpledialog import math class Person: def __init__(self, name="New Person", x=0, y=0): self.name = name self.x = x self.y = y self.spouse = None self.children = [] self.parents = [] self.rect_id = None self.text_id = None def add_child(self, child): if child not in self.children: self.children.append(child) child.parents.append(self) def add_parent(self, parent): if parent not in self.parents: self.parents.append(parent) parent.children.append(self) def set_spouse(self, spouse): if self.spouse: self.spouse.spouse = None self.spouse = spouse if spouse: spouse.spouse = self def remove_from_family(self): # Remove spouse relationship if self.spouse: self.spouse.spouse = None # Remove from parents' children lists for parent in self.parents: if self in parent.children: parent.children.remove(self) # Remove from children's parents lists for child in self.children: if self in child.parents: child.parents.remove(self) class FamilyTreeApp: def __init__(self, root): self.root = root self.root.title("Family Tree Diagram") self.root.geometry("1000x700") # Create canvas with scrollbars self.create_canvas() # Data structures self.people = [] self.selected_person = None # Layout parameters self.person_width = 120 self.person_height = 60 self.level_height = 120 self.person_spacing = 150 # Create initial person initial_person = Person("Click to Edit", 400, 300) self.people.append(initial_person) self.draw_tree() def create_canvas(self): # Main frame main_frame = tk.Frame(self.root) main_frame.pack(fill=tk.BOTH, expand=True) # Canvas with scrollbars self.canvas = tk.Canvas(main_frame, bg='white', scrollregion=(0, 0, 2000, 2000)) v_scrollbar = tk.Scrollbar(main_frame, orient=tk.VERTICAL, command=self.canvas.yview) h_scrollbar = tk.Scrollbar(main_frame, orient=tk.HORIZONTAL, command=self.canvas.xview) self.canvas.configure(yscrollcommand=v_scrollbar.set, xscrollcommand=h_scrollbar.set) v_scrollbar.pack(side=tk.RIGHT, fill=tk.Y) h_scrollbar.pack(side=tk.BOTTOM, fill=tk.X) self.canvas.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) # Bind events self.canvas.bind("<Button-1>", self.on_click) self.canvas.bind("<Button-3>", self.on_right_click) # Right click for context menu def calculate_layout(self): """Calculate positions for all people in the tree""" if not self.people: return # Find root people (those with no parents) roots = [p for p in self.people if not p.parents] if not roots: # If no roots found, pick the first person roots = [self.people[0]] # Calculate levels levels = {} self.assign_levels(roots, levels, 0) # Group people by level level_groups = {} for person, level in levels.items(): if level not in level_groups: level_groups[level] = [] level_groups[level].append(person) # Calculate positions canvas_width = 2000 for level, people_in_level in level_groups.items(): y = 100 + level * self.level_height # Sort people in level to keep families together people_in_level.sort(key=lambda p: self.get_family_sort_key(p)) total_width = len(people_in_level) * self.person_spacing start_x = (canvas_width - total_width) // 2 for i, person in enumerate(people_in_level): person.x = start_x + i * self.person_spacing person.y = y def assign_levels(self, people, levels, level): """Recursively assign levels to people""" for person in people: if person not in levels: levels[person] = level # Process children at next level if person.children: self.assign_levels(person.children, levels, level + 1) def get_family_sort_key(self, person): """Generate a sort key to keep families together""" # Use parent names as primary sort key if person.parents: return ''.join(sorted([p.name for p in person.parents])) return person.name def draw_tree(self): """Draw the entire family tree""" self.canvas.delete("all") # Calculate layout self.calculate_layout() # Draw connections first (so they appear behind rectangles) self.draw_connections() # Draw people for person in self.people: self.draw_person(person) def draw_person(self, person): """Draw a single person as a rectangle with text""" x1 = person.x - self.person_width // 2 y1 = person.y - self.person_height // 2 x2 = person.x + self.person_width // 2 y2 = person.y + self.person_height // 2 # Choose color based on selection color = "lightblue" if person == self.selected_person else "lightgray" # Draw rectangle person.rect_id = self.canvas.create_rectangle( x1, y1, x2, y2, fill=color, outline="black", width=2, tags=f"person_{id(person)}" ) # Draw text person.text_id = self.canvas.create_text( person.x, person.y, text=person.name, font=("Arial", 10, "bold"), width=self.person_width - 10, tags=f"person_{id(person)}" ) def draw_connections(self): """Draw family relationship lines""" for person in self.people: # Draw spouse connection if person.spouse and id(person) < id(person.spouse): # Draw only once per couple self.draw_spouse_line(person, person.spouse) # Draw parent-child connections if person.children: self.draw_parent_child_lines(person) def draw_spouse_line(self, person1, person2): """Draw line between spouses""" self.canvas.create_line( person1.x, person1.y, person2.x, person2.y, fill="red", width=3, tags="connection" ) def draw_parent_child_lines(self, parent): """Draw lines from parent to children""" if not parent.children: return # Find the spouse to determine the family unit center spouse = parent.spouse if spouse: family_x = (parent.x + spouse.x) // 2 family_y = min(parent.y, spouse.y) else: family_x = parent.x family_y = parent.y # Draw vertical line down from family unit children_y = min([child.y for child in parent.children]) mid_y = family_y + (children_y - family_y) // 2 self.canvas.create_line( family_x, family_y + self.person_height // 2, family_x, mid_y, fill="blue", width=2, tags="connection" ) # Draw horizontal line across children if len(parent.children) > 1: left_x = min([child.x for child in parent.children]) right_x = max([child.x for child in parent.children]) self.canvas.create_line( left_x, mid_y, right_x, mid_y, fill="blue", width=2, tags="connection" ) # Draw vertical lines to each child for child in parent.children: self.canvas.create_line( child.x, mid_y, child.x, child.y - self.person_height // 2, fill="blue", width=2, tags="connection" ) def on_click(self, event): """Handle left mouse click""" clicked_item = self.canvas.find_closest(event.x, event.y)[0] # Find which person was clicked clicked_person = None for person in self.people: if (person.rect_id == clicked_item or person.text_id == clicked_item): clicked_person = person break if clicked_person: self.selected_person = clicked_person self.show_edit_menu(clicked_person, event.x, event.y) else: self.selected_person = None self.draw_tree() def on_right_click(self, event): """Handle right mouse click - same as left click for simplicity""" self.on_click(event) def show_edit_menu(self, person, x, y): """Show context menu for editing person""" menu = tk.Menu(self.root, tearoff=0) menu.add_command(label="Edit Name", command=lambda: self.edit_name(person)) menu.add_command(label="Add Spouse", command=lambda: self.add_spouse(person)) menu.add_command(label="Add Child", command=lambda: self.add_child(person)) menu.add_command(label="Add Parent", command=lambda: self.add_parent(person)) menu.add_separator() menu.add_command(label="Delete Person", command=lambda: self.delete_person(person)) try: menu.tk_popup(event.x_root, event.y_root) finally: menu.grab_release() def edit_name(self, person): """Edit person's name""" new_name = simpledialog.askstring("Edit Name", "Enter new name:", initialvalue=person.name) if new_name: person.name = new_name self.draw_tree() def add_spouse(self, person): """Add spouse to person""" if person.spouse: messagebox.showwarning("Warning", f"{person.name} already has a spouse!") return spouse_name = simpledialog.askstring("Add Spouse", "Enter spouse's name:") if spouse_name: spouse = Person(spouse_name, person.x + self.person_spacing, person.y) person.set_spouse(spouse) self.people.append(spouse) self.draw_tree() def add_child(self, person): """Add child to person""" child_name = simpledialog.askstring("Add Child", "Enter child's name:") if child_name: child = Person(child_name, person.x, person.y + self.level_height) person.add_child(child) # If person has spouse, add child to spouse too if person.spouse: person.spouse.add_child(child) self.people.append(child) self.draw_tree() def add_parent(self, person): """Add parent to person""" parent_name = simpledialog.askstring("Add Parent", "Enter parent's name:") if parent_name: parent = Person(parent_name, person.x, person.y - self.level_height) person.add_parent(parent) self.people.append(parent) self.draw_tree() def delete_person(self, person): """Delete person from tree""" if len(self.people) == 1: messagebox.showwarning("Warning", "Cannot delete the last person!") return result = messagebox.askyesno("Confirm Delete", f"Are you sure you want to delete {person.name}?") if result: person.remove_from_family() self.people.remove(person) if self.selected_person == person: self.selected_person = None self.draw_tree() def main(): root = tk.Tk() app = FamilyTreeApp(root) root.mainloop() if __name__ == "__main__": main()
fail_familytree_3.py
import tkinter as tk from tkinter import simpledialog, messagebox class Person: def __init__(self, name="Person"): self.name = name self.spouse = None self.parents = [] # up to 2 self.children = [] class FamilyTreeApp(tk.Tk): BOX_W = 80 BOX_H = 40 V_GAP = 50 H_GAP = 40 def __init__(self): super().__init__() self.title("Family Tree") self.canvas = tk.Canvas(self, width=1000, height=700, bg="white") self.canvas.pack(fill="both", expand=True) self.root_person = Person() self.box_items = {} # maps canvas item id -> Person self.canvas.bind("<Button-1>", self.on_click) self.draw_tree() # ----- Tree editing actions ----- def edit_name(self, person): new_name = simpledialog.askstring("Edit Name", "Enter name:", initialvalue=person.name) if new_name: person.name = new_name self.draw_tree() def add_spouse(self, person): if person.spouse: messagebox.showinfo("Info", "This person already has a spouse.") return person.spouse = Person("Spouse") person.spouse.spouse = person self.draw_tree() def add_child(self, person): child = Person("Child") # Set parents child.parents = [person] if person.spouse: # If married, both become parents child.parents.append(person.spouse) # Add child to each parent for p in child.parents: p.children.append(child) self.draw_tree() def add_parent(self, person): if len(person.parents) >= 2: messagebox.showinfo("Info", "This person already has 2 parents.") return parent = Person("Parent") parent.children.append(person) person.parents.append(parent) self.draw_tree() def delete_person(self, person): # remove from spouse if person.spouse: person.spouse.spouse = None # remove from parents' children list for p in person.parents: if person in p.children: p.children.remove(person) # remove from children's parents for ch in person.children: if person in ch.parents: ch.parents.remove(person) # If deleting the root person, reset to a new single person if person is self.root_person: self.root_person = Person() self.draw_tree() # ----- Canvas / Drawing ----- def draw_tree(self): self.canvas.delete("all") self.box_items.clear() self.layout_positions = {} self._assign_positions(self.root_person, 0, 0) self._draw_connections(self.root_person) self._draw_boxes(self.root_person) def _assign_positions(self, person, level, offset): # Recursive layout: compute x positions of children then center parents if person in self.layout_positions: return self.layout_positions[person][0] if person.children: child_xs = [] for ch in person.children: child_xs.append(self._assign_positions(ch, level + 1, offset)) offset = child_xs[-1] + self.BOX_W + self.H_GAP center_x = (child_xs[0] + child_xs[-1]) / 2 else: center_x = offset offset += self.BOX_W + self.H_GAP self.layout_positions[person] = (center_x, level) # Spouse should have same level and adjacent x if person.spouse: spouse_x = center_x + self.BOX_W + 10 self.layout_positions[person.spouse] = (spouse_x, level) return center_x def _draw_connections(self, person, drawn=set()): # Draw spouse connection if person.spouse and (person, person.spouse) not in drawn: x, y = self._get_box_center(person) sx, sy = self._get_box_center(person.spouse) self.canvas.create_line(x, y, sx, sy) drawn.add((person, person.spouse)) drawn.add((person.spouse, person)) # Draw children connections for ch in person.children: cx, cy = self._get_box_center(ch) px, py = self._get_box_center(person) self.canvas.create_line(px, py + self.BOX_H//2, cx, cy - self.BOX_H//2) # If spouse exists, connect spouse too if person.spouse: sx, sy = self._get_box_center(person.spouse) self.canvas.create_line(sx, sy + self.BOX_H//2, cx, cy - self.BOX_H//2) self._draw_connections(ch, drawn) def _draw_boxes(self, person, drawn=set()): if person in drawn: return drawn.add(person) x, level = self.layout_positions[person] y = level * (self.BOX_H + self.V_GAP) box = self.canvas.create_rectangle( x, y, x + self.BOX_W, y + self.BOX_H, outline="black", fill="lightyellow" ) text = self.canvas.create_text( x + self.BOX_W/2, y + self.BOX_H/2, text=person.name ) self.box_items[box] = person self.box_items[text] = person if person.spouse: self._draw_boxes(person.spouse, drawn) for ch in person.children: self._draw_boxes(ch, drawn) def _get_box_center(self, person): x, level = self.layout_positions[person] y = level * (self.BOX_H + self.V_GAP) return (x + self.BOX_W/2, y + self.BOX_H/2) # ----- Mouse click handler ----- def on_click(self, event): item = self.canvas.find_closest(event.x, event.y) person = self.box_items.get(item[0]) if person: self.popup_menu(person, event.x_root, event.y_root) def popup_menu(self, person, x, y): menu = tk.Menu(self, tearoff=0) menu.add_command(label="Edit name", command=lambda: self.edit_name(person)) menu.add_command(label="Add spouse", command=lambda: self.add_spouse(person)) menu.add_command(label="Add child", command=lambda: self.add_child(person)) menu.add_command(label="Add parent", command=lambda: self.add_parent(person)) menu.add_command(label="Delete", command=lambda: self.delete_person(person)) menu.tk_popup(x, y) if __name__ == "__main__": app = FamilyTreeApp() app.mainloop()
Симулятор лавовой лампы
Промпт:
Создай программу на Python, которая использует только tkinter и стандартную библиотеку. Это должен быть симулятор лавовой лампы, показывающий капли, мягко плавающие по окну. Не используй круги, эллипсы или многоугольники для формы капель. Для контуров капель используй кривые Безье. Капли должны медленно сливаться и разделяться, как в настоящей лавовой лампе.
Результат: На лавовую лампу это не было похоже. Программы показывали движущиеся фигуры — и на этом всё. При сближении они грубо «сливались»: одна капля исчезала, а другая мгновенно увеличивалась в размере. Разделения не происходило; в некоторых приложениях мелкие капли возникали буквально из ниоткуда. Капли, как правило, дрожали, будто нервные чихуахуа.
Одна из LLM просто рисовала контуры капель.

fail_lavalamp_1.py
import tkinter as tk import random import math WINDOW_WIDTH = 400 WINDOW_HEIGHT = 600 WAX_COLOR = "#f84d6a" BACKGROUND_COLOR = "#101030" NUM_SIDES = 12 # number of vertices per blob WIGGLE_AMOUNT = 4 # how much each point can change per frame class WaxBlob: def __init__(self, canvas): self.radius = random.randint(30, 60) self.x = random.randint(self.radius, WINDOW_WIDTH - self.radius) self.y = random.randint(self.radius, WINDOW_HEIGHT - self.radius) self.vy = random.uniform(-0.8, 0.8) self.canvas = canvas # generate random radial offsets so shape isn't a perfect circle self.offsets = [random.uniform(0.8, 1.2) for _ in range(NUM_SIDES)] self.id = canvas.create_polygon(self._get_points(), fill=WAX_COLOR, outline="") def _get_points(self): points = [] for i in range(NUM_SIDES): angle = (2 * math.pi / NUM_SIDES) * i r = self.radius * self.offsets[i] px = self.x + r * math.cos(angle) py = self.y + r * math.sin(angle) points.extend([px, py]) return points def move(self): self.y += self.vy if self.y - self.radius < 0 or self.y + self.radius > WINDOW_HEIGHT: self.vy = -self.vy # gently wiggle each radial offset so that the blob keeps changing shape self.offsets = [ max(0.4, min(1.6, off + random.uniform(-0.02, 0.02))) for off in self.offsets ] self.canvas.coords(self.id, *self._get_points()) def distance_to(self, other): return math.hypot(self.x - other.x, self.y - other.y) def merge_with(self, other): area1 = math.pi * (self.radius ** 2) area2 = math.pi * (other.radius ** 2) total = area1 + area2 self.radius = math.sqrt(total / math.pi) self.offsets = [ (a + b) / 2 for a, b in zip(self.offsets, other.offsets) ] self.x = (self.x + other.x) / 2 self.y = (self.y + other.y) / 2 def simulate(): for blob in blobs: blob.move() for i in range(len(blobs)): for j in range(i + 1, len(blobs)): b1 = blobs[i] b2 = blobs[j] if b1.distance_to(b2) < (b1.radius + b2.radius) * 0.65: b1.merge_with(b2) canvas.delete(b2.id) blobs.remove(b2) break if random.random() < 0.01 and len(blobs) < 8: new_blob = WaxBlob(canvas) new_blob.radius = 15 blobs.append(new_blob) root.after(30, simulate) root = tk.Tk() root.title("Lava Lamp Simulator") canvas = tk.Canvas(root, width=WINDOW_WIDTH, height=WINDOW_HEIGHT, bg=BACKGROUND_COLOR, highlightthickness=0) canvas.pack() blobs = [WaxBlob(canvas) for _ in range(4)] root.after(30, simulate) root.mainloop()
fail_lavalamp_2.py
import tkinter as tk import math import random from datetime import datetime class WaxBlob: def __init__(self, x, y, radius, canvas_width, canvas_height): self.x = x self.y = y self.base_radius = radius self.vx = random.uniform(-0.3, 0.3) self.vy = random.uniform(-0.8, -0.2) self.canvas_width = canvas_width self.canvas_height = canvas_height self.density = radius * 0.1 self.temperature = random.uniform(0.5, 1.0) self.age = 0 # Shape deformation parameters self.oscillation_phase = random.uniform(0, 2 * math.pi) self.oscillation_speed = random.uniform(0.02, 0.08) self.deformation_strength = random.uniform(0.1, 0.3) # Control points for blob shape (relative to center) self.num_control_points = 6 self.control_points = [] self.control_phases = [] self.control_speeds = [] for i in range(self.num_control_points): angle = (2 * math.pi * i) / self.num_control_points self.control_points.append({ 'base_angle': angle, 'radius_offset': random.uniform(0.8, 1.2), 'tangent_length': random.uniform(0.3, 0.7) }) self.control_phases.append(random.uniform(0, 2 * math.pi)) self.control_speeds.append(random.uniform(0.01, 0.05)) # Flow deformation based on velocity self.flow_memory = [] self.max_flow_memory = 5 @property def radius(self): return self.base_radius def update(self): self.age += 1 # Heat rises, cool sinks heat_effect = (1.0 - self.y / self.canvas_height) * 0.3 buoyancy = (self.temperature + heat_effect - 0.5) * 0.02 # Gravity and buoyancy self.vy += 0.005 - buoyancy # Thermal currents thermal_x = math.sin(self.y * 0.01 + self.age * 0.02) * 0.1 thermal_y = math.cos(self.x * 0.008 + self.age * 0.015) * 0.05 self.vx += thermal_x self.vy += thermal_y # Damping self.vx *= 0.98 self.vy *= 0.995 # Store velocity for flow deformation velocity_magnitude = math.sqrt(self.vx**2 + self.vy**2) self.flow_memory.append(velocity_magnitude) if len(self.flow_memory) > self.max_flow_memory: self.flow_memory.pop(0) # Update position self.x += self.vx self.y += self.vy # Update shape oscillations self.oscillation_phase += self.oscillation_speed for i in range(len(self.control_phases)): self.control_phases[i] += self.control_speeds[i] # Boundary collision if self.x - self.base_radius <= 0: self.x = self.base_radius self.vx = abs(self.vx) * 0.3 + random.uniform(0, 0.2) elif self.x + self.base_radius >= self.canvas_width: self.x = self.canvas_width - self.base_radius self.vx = -abs(self.vx) * 0.3 - random.uniform(0, 0.2) if self.y - self.base_radius <= 0: self.y = self.base_radius self.vy = abs(self.vy) * 0.4 self.temperature = max(0.2, self.temperature - 0.1) elif self.y + self.base_radius >= self.canvas_height: self.y = self.canvas_height - self.base_radius self.vy = -abs(self.vy) * 0.4 self.temperature = min(1.0, self.temperature + 0.2) def get_bezier_control_points(self): """Generate control points for bezier curves that form the blob shape""" avg_velocity = sum(self.flow_memory) / max(len(self.flow_memory), 1) velocity_angle = math.atan2(self.vy, self.vx) control_points = [] for i in range(self.num_control_points): cp = self.control_points[i] # Base position base_angle = cp['base_angle'] # Oscillation deformation oscillation = math.sin(self.oscillation_phase + i * 0.8) * self.deformation_strength # Individual point oscillation point_oscillation = math.sin(self.control_phases[i]) * 0.2 # Flow-based deformation flow_factor = avg_velocity * 0.8 angle_diff = abs(base_angle - velocity_angle) angle_diff = min(angle_diff, 2 * math.pi - angle_diff) if angle_diff < math.pi / 2: flow_deformation = flow_factor * (1 - angle_diff / (math.pi / 2)) * 0.4 else: flow_deformation = -flow_factor * 0.15 # Thermal deformation thermal_deformation = self.temperature * 0.15 * math.sin(self.age * 0.03 + i * 1.2) # Combined radius for this control point radius_multiplier = (cp['radius_offset'] + oscillation + point_oscillation + flow_deformation + thermal_deformation) radius_multiplier = max(0.4, min(1.8, radius_multiplier)) point_radius = self.base_radius * radius_multiplier # Main control point x = self.x + math.cos(base_angle) * point_radius y = self.y + math.sin(base_angle) * point_radius # Tangent control points for bezier curves tangent_length = self.base_radius * cp['tangent_length'] * radius_multiplier tangent_angle1 = base_angle - math.pi / 2 tangent_angle2 = base_angle + math.pi / 2 # Add some flow-based tangent adjustment flow_tangent_adjust = avg_velocity * 0.3 tangent_length *= (1 + flow_tangent_adjust) tx1 = x + math.cos(tangent_angle1) * tangent_length ty1 = y + math.sin(tangent_angle1) * tangent_length tx2 = x + math.cos(tangent_angle2) * tangent_length ty2 = y + math.sin(tangent_angle2) * tangent_length control_points.append({ 'point': (x, y), 'tangent1': (tx1, ty1), 'tangent2': (tx2, ty2) }) return control_points def distance_to(self, other): return math.sqrt((self.x - other.x)**2 + (self.y - other.y)**2) def can_merge_with(self, other): distance = self.distance_to(other) merge_distance = (self.base_radius + other.base_radius) * 0.8 return distance < merge_distance def merge_with(self, other): # Conservation of mass total_area = math.pi * (self.base_radius**2 + other.base_radius**2) new_radius = math.sqrt(total_area / math.pi) # Weighted average total_mass = self.base_radius**2 + other.base_radius**2 new_x = (self.x * self.base_radius**2 + other.x * other.base_radius**2) / total_mass new_y = (self.y * self.base_radius**2 + other.y * other.base_radius**2) / total_mass new_vx = (self.vx * self.base_radius**2 + other.vx * other.base_radius**2) / total_mass new_vy = (self.vy * self.base_radius**2 + other.vy * other.base_radius**2) / total_mass new_temp = (self.temperature + other.temperature) / 2 merged = WaxBlob(new_x, new_y, new_radius, self.canvas_width, self.canvas_height) merged.vx = new_vx merged.vy = new_vy merged.temperature = new_temp # Blend shape parameters merged.oscillation_phase = (self.oscillation_phase + other.oscillation_phase) / 2 merged.oscillation_speed = (self.oscillation_speed + other.oscillation_speed) / 2 merged.deformation_strength = (self.deformation_strength + other.deformation_strength) / 2 return merged def should_split(self): if self.base_radius > 40: return random.random() < 0.002 return False def split(self): split_ratio = random.uniform(0.3, 0.7) area1 = math.pi * self.base_radius**2 * split_ratio area2 = math.pi * self.base_radius**2 * (1 - split_ratio) radius1 = math.sqrt(area1 / math.pi) radius2 = math.sqrt(area2 / math.pi) angle = random.uniform(0, 2 * math.pi) offset = (radius1 + radius2) * 0.6 blob1 = WaxBlob( self.x + math.cos(angle) * offset, self.y + math.sin(angle) * offset, radius1, self.canvas_width, self.canvas_height ) blob2 = WaxBlob( self.x - math.cos(angle) * offset, self.y - math.sin(angle) * offset, radius2, self.canvas_width, self.canvas_height ) blob1.vx = self.vx + random.uniform(-0.5, 0.5) blob1.vy = self.vy + random.uniform(-0.5, 0.5) blob2.vx = self.vx + random.uniform(-0.5, 0.5) blob2.vy = self.vy + random.uniform(-0.5, 0.5) blob1.temperature = self.temperature + random.uniform(-0.1, 0.1) blob2.temperature = self.temperature + random.uniform(-0.1, 0.1) # Vary shape parameters blob1.oscillation_speed = self.oscillation_speed + random.uniform(-0.02, 0.02) blob2.oscillation_speed = self.oscillation_speed + random.uniform(-0.02, 0.02) blob1.deformation_strength = self.deformation_strength + random.uniform(-0.1, 0.1) blob2.deformation_strength = self.deformation_strength + random.uniform(-0.1, 0.1) return [blob1, blob2] class LavaLampSimulator: def __init__(self, root): self.root = root self.root.title("Lava Lamp Simulator - Bezier Blobs") self.root.geometry("400x600") self.root.configure(bg='black') # Create canvas self.canvas = tk.Canvas(root, width=380, height=580, bg='#1a0d0d', highlightthickness=0) self.canvas.pack(pady=10) # Initialize blobs self.blobs = [] self.create_initial_blobs() # Start animation self.animate() def create_initial_blobs(self): for _ in range(6): x = random.uniform(50, 330) y = random.uniform(100, 500) radius = random.uniform(20, 35) blob = WaxBlob(x, y, radius, 380, 580) self.blobs.append(blob) def get_blob_color(self, blob): temp = blob.temperature base_red = int(255 * (0.7 + temp * 0.3)) base_green = int(100 * temp) base_blue = int(50 * temp) height_factor = 1.0 - (blob.y / 580) red = min(255, int(base_red * (0.8 + height_factor * 0.2))) green = min(255, int(base_green * (0.8 + height_factor * 0.2))) blue = min(255, int(base_blue * (0.8 + height_factor * 0.2))) return f"#{red:02x}{green:02x}{blue:02x}" def bezier_point(self, t, p0, p1, p2, p3): """Calculate a point on a cubic bezier curve""" u = 1 - t return ( u**3 * p0[0] + 3 * u**2 * t * p1[0] + 3 * u * t**2 * p2[0] + t**3 * p3[0], u**3 * p0[1] + 3 * u**2 * t * p1[1] + 3 * u * t**2 * p2[1] + t**3 * p3[1] ) def create_bezier_blob_outline(self, blob, resolution=20): """Create a smooth blob outline using bezier curves""" control_points = blob.get_bezier_control_points() outline_points = [] num_segments = len(control_points) for i in range(num_segments): # Current and next control point curr = control_points[i] next_i = (i + 1) % num_segments next_cp = control_points[next_i] # Define bezier curve from current point to next point p0 = curr['point'] p1 = curr['tangent2'] # Outgoing tangent from current point p2 = next_cp['tangent1'] # Incoming tangent to next point p3 = next_cp['point'] # Generate points along the bezier curve for j in range(resolution): if i == num_segments - 1 and j == resolution - 1: # Skip the last point to avoid duplication break t = j / resolution point = self.bezier_point(t, p0, p1, p2, p3) outline_points.extend([point[0], point[1]]) return outline_points def draw_blob(self, blob): color = self.get_blob_color(blob) try: # Get bezier outline points outline_points = self.create_bezier_blob_outline(blob) if len(outline_points) >= 6: # Draw the main blob self.canvas.create_polygon(outline_points, fill=color, outline='', smooth=True) # Create highlight with scaled bezier shape highlight_points = [] highlight_scale = 0.4 highlight_center_x = blob.x - blob.base_radius * 0.3 highlight_center_y = blob.y - blob.base_radius * 0.3 for i in range(0, len(outline_points), 2): orig_x = outline_points[i] orig_y = outline_points[i + 1] # Vector from highlight center to point vec_x = orig_x - highlight_center_x vec_y = orig_y - highlight_center_y # Scale toward highlight center new_x = highlight_center_x + vec_x * highlight_scale new_y = highlight_center_y + vec_y * highlight_scale highlight_points.extend([new_x, new_y]) # Lighter color for highlight r = min(255, int(color[1:3], 16) + 40) g = min(255, int(color[3:5], 16) + 20) b = min(255, int(color[5:7], 16) + 10) highlight_color = f"#{r:02x}{g:02x}{b:02x}" if len(highlight_points) >= 6: self.canvas.create_polygon(highlight_points, fill=highlight_color, outline='', smooth=True) else: self.draw_fallback_circle(blob, color) except (tk.TclError, ValueError): # Fallback to circle if bezier fails self.draw_fallback_circle(blob, color) def draw_fallback_circle(self, blob, color): """Fallback method to draw a simple circle""" x1 = blob.x - blob.base_radius y1 = blob.y - blob.base_radius x2 = blob.x + blob.base_radius y2 = blob.y + blob.base_radius self.canvas.create_oval(x1, y1, x2, y2, fill=color, outline='') def update_physics(self): # Update all blobs for blob in self.blobs: blob.update() # Handle merging merged_blobs = [] used_indices = set() for i, blob1 in enumerate(self.blobs): if i in used_indices: continue merged = False for j, blob2 in enumerate(self.blobs[i+1:], i+1): if j in used_indices: continue if blob1.can_merge_with(blob2): new_blob = blob1.merge_with(blob2) merged_blobs.append(new_blob) used_indices.add(i) used_indices.add(j) merged = True break if not merged: merged_blobs.append(blob1) self.blobs = merged_blobs # Handle splitting new_blobs = [] for blob in self.blobs: if blob.should_split(): split_blobs = blob.split() new_blobs.extend(split_blobs) else: new_blobs.append(blob) self.blobs = new_blobs # Maintain minimum number of blobs if len(self.blobs) < 3: x = random.uniform(50, 330) y = random.uniform(400, 550) radius = random.uniform(15, 25) new_blob = WaxBlob(x, y, radius, 380, 580) new_blob.temperature = 0.8 self.blobs.append(new_blob) def animate(self): # Clear canvas self.canvas.delete("all") # Update physics self.update_physics() # Draw all blobs for blob in self.blobs: self.draw_blob(blob) # Schedule next frame self.root.after(50, self.animate) # Add the missing method to WaxBlob class def get_bezier_control_points(self): """Generate control points for bezier curves that form the blob shape""" avg_velocity = sum(self.flow_memory) / max(len(self.flow_memory), 1) velocity_angle = math.atan2(self.vy, self.vx) control_points = [] for i in range(self.num_control_points): cp = self.control_points[i] # Base position base_angle = cp['base_angle'] # Oscillation deformation oscillation = math.sin(self.oscillation_phase + i * 0.8) * self.deformation_strength # Individual point oscillation point_oscillation = math.sin(self.control_phases[i]) * 0.2 # Flow-based deformation flow_factor = avg_velocity * 0.8 angle_diff = abs(base_angle - velocity_angle) angle_diff = min(angle_diff, 2 * math.pi - angle_diff) if angle_diff < math.pi / 2: flow_deformation = flow_factor * (1 - angle_diff / (math.pi / 2)) * 0.4 else: flow_deformation = -flow_factor * 0.15 # Thermal deformation thermal_deformation = self.temperature * 0.15 * math.sin(self.age * 0.03 + i * 1.2) # Combined radius for this control point radius_multiplier = (cp['radius_offset'] + oscillation + point_oscillation + flow_deformation + thermal_deformation) radius_multiplier = max(0.4, min(1.8, radius_multiplier)) point_radius = self.base_radius * radius_multiplier # Main control point position x = self.x + math.cos(base_angle) * point_radius y = self.y + math.sin(base_angle) * point_radius # Calculate tangent control points for smooth bezier curves tangent_length = self.base_radius * cp['tangent_length'] * radius_multiplier * 0.5 # Tangent direction (perpendicular to radius, with some variation) tangent_base_angle = base_angle + math.pi / 2 tangent_variation = math.sin(self.control_phases[i] * 2) * 0.3 tangent_angle = tangent_base_angle + tangent_variation # Flow influence on tangents flow_influence = avg_velocity * 0.4 flow_angle_influence = math.sin(base_angle - velocity_angle) * flow_influence tangent_angle += flow_angle_influence # Tangent control points (before and after the main point) tx1 = x - math.cos(tangent_angle) * tangent_length ty1 = y - math.sin(tangent_angle) * tangent_length tx2 = x + math.cos(tangent_angle) * tangent_length ty2 = y + math.sin(tangent_angle) * tangent_length control_points.append({ 'point': (x, y), 'tangent1': (tx1, ty1), 'tangent2': (tx2, ty2) }) return control_points # Attach the method to the WaxBlob class WaxBlob.get_bezier_control_points = get_bezier_control_points if __name__ == "__main__": root = tk.Tk() app = LavaLampSimulator(root) root.mainloop()
Симулятор снежного шара
Промпт:
Создай программу на Python, которая использует только tkinter и стандартную библиотеку. Программа — это “снежный шар” с синим фоном и белым “снегом” внутри. Когда окно двигают и “трясут”, снег тоже должен двигаться так, как это происходит в снежном шаре. Чем сильнее тряска, тем быстрее движется снег. Снежинки должны закручиваться по спирали внутри окна, а не летать, как отскакивающие пинг-понговые мячи.
Результат: У Claude был ограниченный успех: при перемещении окна «снежинки» действительно «тряслись», но вели себя скорее как пинг-понговые мячи в картонной коробке, а не как снег в шаре. Скорость и сила тряски не влияли на поведение: медленная и быстрая тряска давали один и тот же эффект.

fail_snowglobe_1.py
import tkinter as tk import random import time WIDTH, HEIGHT = 400, 400 NUM_SNOWFLAKES = 200 GRAVITY = 0.2 FRICTION = 0.98 class Snowflake: def __init__(self, canvas): self.canvas = canvas self.x = random.uniform(0, WIDTH) self.y = random.uniform(0, HEIGHT) self.vx = 0 self.vy = 0 self.id = canvas.create_oval(self.x, self.y, self.x+2, self.y+2, fill="white", outline="") def update(self, shake_x, shake_y): # Apply shake force to the velocity self.vx += shake_x self.vy += shake_y # Apply gravity self.vy += GRAVITY # Move flake self.x += self.vx self.y += self.vy # Stay in bounds (wrap horizontally, bounce vertically) if self.x < 0: self.x = WIDTH elif self.x > WIDTH: self.x = 0 # Top boundary: wrap to bottom if self.y < 0: self.y = HEIGHT # Bottom boundary: bounce if self.y > HEIGHT: self.y = HEIGHT self.vy *= -0.5 # bounce a bit # Friction to slow flakes gradually self.vx *= FRICTION self.vy *= FRICTION self.canvas.coords(self.id, self.x, self.y, self.x+2, self.y+2) class SnowGlobe: def __init__(self, root): self.root = root self.canvas = tk.Canvas(root, width=WIDTH, height=HEIGHT, bg="skyblue") self.canvas.pack() self.snowflakes = [Snowflake(self.canvas) for _ in range(NUM_SNOWFLAKES)] # Track window motion self.prev_x = root.winfo_rootx() self.prev_y = root.winfo_rooty() self.shake_x = 0 self.shake_y = 0 root.bind("<Configure>", self.on_configure) self.update_animation() def on_configure(self, event): cur_x = self.root.winfo_rootx() cur_y = self.root.winfo_rooty() dx = cur_x - self.prev_x dy = cur_y - self.prev_y self.prev_x = cur_x self.prev_y = cur_y # A little scaling so larger movements cause bigger shake self.shake_x = dx * 0.2 self.shake_y = dy * 0.2 def update_animation(self): # Apply shake to each snowflake for snow in self.snowflakes: snow.update(self.shake_x, self.shake_y) # shake “dampens out†over time self.shake_x *= 0.9 self.shake_y *= 0.9 self.root.after(16, self.update_animation) if __name__ == "__main__": root = tk.Tk() root.title("Snow Globe") globe = SnowGlobe(root) root.mainloop()
fail_snowglobe_2.py
import tkinter as tk import random import math import time class SnowGlobe: def __init__(self): self.root = tk.Tk() self.root.title("Snow Globe") self.root.geometry("400x400") self.root.configure(bg='lightblue') # Canvas for drawing snow self.canvas = tk.Canvas(self.root, width=380, height=380, bg='lightblue', highlightthickness=0) self.canvas.pack(padx=10, pady=10) # Snow particles self.snowflakes = [] self.num_snowflakes = 100 # Window position tracking for shake detection self.last_x = self.root.winfo_x() self.last_y = self.root.winfo_y() self.last_time = time.time() self.velocity_x = 0 self.velocity_y = 0 self.shake_intensity = 0 # Physics constants self.gravity = 0.1 self.friction = 0.98 self.bounce_damping = 0.7 self.create_snowflakes() self.animate() # Bind window movement events self.root.bind('<Configure>', self.on_window_move) def create_snowflakes(self): """Create initial snowflakes with random positions and properties""" for _ in range(self.num_snowflakes): snowflake = { 'x': random.uniform(5, 375), 'y': random.uniform(5, 375), 'vx': 0, 'vy': 0, 'size': random.uniform(2, 6), 'id': None } self.snowflakes.append(snowflake) def on_window_move(self, event): """Track window movement to detect shaking""" if event.widget == self.root: current_time = time.time() current_x = self.root.winfo_x() current_y = self.root.winfo_y() # Calculate time difference dt = current_time - self.last_time if dt > 0: # Calculate velocity based on position change self.velocity_x = (current_x - self.last_x) / dt self.velocity_y = (current_y - self.last_y) / dt # Calculate shake intensity based on velocity magnitude velocity_magnitude = math.sqrt(self.velocity_x**2 + self.velocity_y**2) self.shake_intensity = min(velocity_magnitude / 100, 10) # Cap at 10 # Apply shake force to snowflakes self.apply_shake_force() self.last_x = current_x self.last_y = current_y self.last_time = current_time def apply_shake_force(self): """Apply forces to snowflakes based on window shaking""" if self.shake_intensity > 0.1: # Only apply if significant movement for snowflake in self.snowflakes: # Add random component to make it more realistic force_x = (self.velocity_x / 50) + random.uniform(-1, 1) * self.shake_intensity force_y = (self.velocity_y / 50) + random.uniform(-1, 1) * self.shake_intensity snowflake['vx'] += force_x snowflake['vy'] += force_y def update_snowflakes(self): """Update snowflake positions and handle physics""" for snowflake in self.snowflakes: # Apply gravity (always pulling down) snowflake['vy'] += self.gravity # Update positions snowflake['x'] += snowflake['vx'] snowflake['y'] += snowflake['vy'] # Apply friction snowflake['vx'] *= self.friction snowflake['vy'] *= self.friction # Boundary collisions with bounce if snowflake['x'] <= snowflake['size']: snowflake['x'] = snowflake['size'] snowflake['vx'] = -snowflake['vx'] * self.bounce_damping elif snowflake['x'] >= 380 - snowflake['size']: snowflake['x'] = 380 - snowflake['size'] snowflake['vx'] = -snowflake['vx'] * self.bounce_damping if snowflake['y'] <= snowflake['size']: snowflake['y'] = snowflake['size'] snowflake['vy'] = -snowflake['vy'] * self.bounce_damping elif snowflake['y'] >= 380 - snowflake['size']: snowflake['y'] = 380 - snowflake['size'] snowflake['vy'] = -snowflake['vy'] * self.bounce_damping # Extra damping when hitting bottom (like settling) snowflake['vx'] *= 0.8 def draw_snowflakes(self): """Draw all snowflakes on the canvas""" self.canvas.delete("snowflake") for snowflake in self.snowflakes: x, y, size = snowflake['x'], snowflake['y'], snowflake['size'] # Draw snowflake as a white circle self.canvas.create_oval( x - size, y - size, x + size, y + size, fill='white', outline='white', tags="snowflake" ) # Add a sparkle effect for larger snowflakes if size > 4: self.canvas.create_oval( x - 1, y - 1, x + 1, y + 1, fill='lightcyan', outline='lightcyan', tags="snowflake" ) def animate(self): """Main animation loop""" self.update_snowflakes() self.draw_snowflakes() # Gradually reduce shake intensity over time self.shake_intensity *= 0.95 # Schedule next frame self.root.after(16, self.animate) # ~60 FPS def run(self): """Start the snow globe application""" self.root.mainloop() if __name__ == "__main__": snow_globe = SnowGlobe() snow_globe.run()
Русскоязычное сообщество про Python

Друзья! Эту статью перевела команда Python for Devs — канала, где каждый день выходят самые свежие и полезные материалы о Python и его экосистеме. Подписывайтесь, чтобы ничего не пропустить!
ссылка на оригинал статьи https://habr.com/ru/articles/944698/
Добавить комментарий