Всем привет!
Наша компания занимается разработкой онлайн игр и сейчас мы работаем над мобильной версией нашего основного проекта. В этой статье хотим поделиться опытом разработки GLSL шейдеров для Android проекта с примерами и исходниками.
О проекте
Изначально игра была браузерная на Flash, но новость о скором прекращении поддержки Flash заставила нас перенести проект на HTML5. В качестве языка разработки был использован Kotlin, и через полгода мы смогли запустить проект и на Android. К сожалению, без оптимизации на мобильных устройствах игре не хватало производительности.
Чтобы повысить FPS, было решено переработать графический движок. Раньше мы использовали несколько универсальных шейдеров, а теперь для каждого эффекта решили писать отдельный шейдер, заточенный под определенную задачу, чтобы иметь возможность сделать их работу эффективнее.
Чего нам не хватало
Шейдеры можно хранить в строке, но этот способ исключает проверку синтаксиса и согласования типов, поэтому обычно шейдеры хранят в Assets или Raw файлах, так как это позволяет включить проверку, установив плагин для Android Studio. Но и у этого подхода есть недостаток — отсутствие реиспользования: чтобы сделать небольшие правки, приходится создавать новый файл шейдера.
Таким образом, чтобы:
— разрабатывать шейдеры на Kotlin,
— иметь проверку синтаксиса на этапе компиляции,
— иметь возможность реиспользовать код между шейдерами,
потребовалось написать «конвертер» Kotlin в GLSL.
Желаемый результат: код шейдера описывается как Kotlin class, в котором attributes, varyings, uniforms — свойства этого класса. Параметры первичного конструктора класса используются для статичных ветвлений и позволяют реиспользовать остальной код шейдера. Блок init — тело шейдера.
Решение
Для реализации были использованы Kotlin delegates. Они позволили в runtime узнавать имя делегируемого свойства, отлавливать моменты get и set обращений и оповещать о них ShaderBuilder — базовый класс всех шейдеров.
class ShaderBuilder { val uniforms = HashSet<String>() val attributes = HashSet<String>() val varyings = HashSet<String>() val instructions = ArrayList<Instruction>() ... fun getSource(): String = ... }
class VaryingDelegate<T : Variable>(private val factory: (ShaderBuilder) -> T) { private lateinit var v: T operator fun provideDelegate(ref: ShaderBuilder, p: KProperty<*>): VaryingDelegate<T> { v = factory(ref) v.value = p.name return this } operator fun getValue(thisRef: ShaderBuilder, property: KProperty<*>): T { thisRef.varyings.add("${v.typeName} ${property.name}") return v } operator fun setValue(thisRef: ShaderBuilder, property: KProperty<*>, value: T) { thisRef.varyings.add("${v.typeName} ${property.name}") thisRef.instructions.add(Instruction.assign(property.name, value.value)) } }
Реализация остальных делегатов на GitHub.
Пример шейдера:
// Так как параметр useAlphaTest известен во время сборки шейдера, // можно избежать попадания части инструкций в шейдер, и, изменяя параметры, // получать разные шейдеры. class FragmentShader(useAlphaTest: Boolean) : ShaderBuilder() { private val alphaTestThreshold by uniform(::GLFloat) private val texture by uniform(::Sampler2D) private val uv by varying(::Vec2) init { var color by vec4() color = texture2D(texture, uv) // static branching if (useAlphaTest) { // dynamic branching If(color.w lt alphaTestThreshold) { discard() } } // Встроенные переменные определены в ShaderBuilder. gl_FragColor = color } }
А вот полученный исходник GLSL (результат выполнения FragmentShader(useAlphaTest = true).getSource()). Сохранились содержание и структура кода:
uniform sampler2D texture; uniform float alphaTestThreshold; varying vec2 uv; void main(void) { vec4 color; color = texture2D(texture, uv); if ((color.w < alphaTestThreshold)) { discard; } gl_FragColor = color; }
Реиспользовать код шейдера, задавая разные параметры при сборке исходника удобно, но это не решает проблему реиспользования полностью. В случае когда необходимо написать один и тот же код в разных шейдерах, можно вынести эти инструкции в отдельный ShaderBuilderComponent и добавлять их по необходимости в основные ShaderBuilders:
class ShadowReceiveComponent : ShaderBuilderComponent() { … fun vertex(parent: ShaderBuilder, inp: Vec4) { vShadowCoord = shadowMVP * inp ... parent.appendComponent(this) } fun fragment(parent: ShaderBuilder, brightness: GLFloat) { var pixel by float() pixel = texture2D(shadowTexture, vShadowCoord.xy).x ... parent.appendComponent(this) } }
Ура, полученный функционал позволяет писать шейдеры на Kotlin, реиспользовать код, проверять синтаксис!
А теперь вспомним про Swizzling в GLSL и посмотрим на его реализацию в Vec2, Vec3, Vec4.
class Vec2 { var x by ComponentDelegate(::GLFloat) var y by ComponentDelegate(::GLFloat) } class Vec3 { var x by ComponentDelegate(::GLFloat) ... // создаем 9шт Vec2 var xx by ComponentDelegate(::Vec2) var xy by ComponentDelegate(::Vec2) ... } class Vec4 { var x by ComponentDelegate(::GLFloat) ... // создаем 16шт Vec2 var xy by ComponentDelegate(::Vec2) ... // создаем 64шт Vec3 var xxx by ComponentDelegate(::Vec3) ... }
В нашем проекте компиляция шейдеров может происходить в игровом цикле по требованию, и подобные выделения объектов порождают major вызовы GC, появляются лаги. Поэтому мы решили перенести сборку исходников шейдеров на этап компиляции с использованием обработчика аннотаций.
Мы помечаем класс аннотацией ShaderProgram:
@ShaderProgram(VertexShader::class, FragmentShader::class) class ShaderProgramName(alphaTest: Boolean)
И annotation processor собирает всевозможные шейдеры в зависимости от параметров конструкторов vertex и fragment классов за нас:
class ShaderProgramNameSources { enum class Sources(vertex: String, fragment: String): ShaderProgramSources { Source0("<vertex code>", "<fragment code>") ... } fun get(alphaTest: Boolean) { if (alphaTest) return Source0 else return Source1 } }
Теперь можно получить текст шейдера из сгенерированного класса:
val sources = ShaderProgramNameSources.get(replaceAlpha = true) println(sources.vertex) println(sources.fragment)
Поскольку результат функции get — ShaderProgramSources — значение из enum, его удобно использовать в качестве ключей в реестре программ (ShaderProgramSources) -> CompiledShaderProgram.
На GitHub есть исходники проекта, включая annotation processor и простые примеры шейдеров и компонентов.
ссылка на оригинал статьи https://habr.com/post/425027/
Добавить комментарий